Loading…

The stomatal flexoskeleton: how the biomechanics of guard cell walls animate an elastic pressure vessel

In plants, stomatal guard cells are one of the most dynamic cell types, rapidly changing their shape and size in response to environmental and intrinsic signals to control gas exchange at the plant surface. Quantitative and systematic knowledge of the biomechanical underpinnings of stomatal dynamics...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2019-07, Vol.70 (14), p.3561-3572
Main Authors: Yi, Hojae, Chen, Yintong, Wang, James Z, Puri, Virendra M, Anderson, Charles T
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In plants, stomatal guard cells are one of the most dynamic cell types, rapidly changing their shape and size in response to environmental and intrinsic signals to control gas exchange at the plant surface. Quantitative and systematic knowledge of the biomechanical underpinnings of stomatal dynamics will enable strategies to optimize stomatal responsiveness and improve plant productivity by enhancing the efficiency of photosynthesis and water use. Recent developments in microscopy, mechanical measurements, and computational modeling have revealed new insights into the biomechanics of stomatal regulation and the genetic, biochemical, and structural origins of how plants achieve rapid and reliable stomatal function by tuning the mechanical properties of their guard cell walls. This review compares historical and recent experimental and modeling studies of the biomechanics of stomatal complexes, highlighting commonalities and contrasts between older and newer studies. Key gaps in our understanding of stomatal functionality are also presented, along with assessments of potential methods that could bridge those gaps.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erz178