Loading…

Direct Writing of a 90 wt% Particle Loading Nanothermite

The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-06, Vol.31 (23), p.e1806575-n/a
Main Authors: Wang, Haiyang, Shen, Jinpeng, Kline, Dylan J., Eckman, Noah, Agrawal, Niti R., Wu, Tao, Wang, Peng, Zachariah, Michael R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3
cites cdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3
container_end_page n/a
container_issue 23
container_start_page e1806575
container_title Advanced materials (Weinheim)
container_volume 31
creator Wang, Haiyang
Shen, Jinpeng
Kline, Dylan J.
Eckman, Noah
Agrawal, Niti R.
Wu, Tao
Wang, Peng
Zachariah, Michael R.
description The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products. Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach.
doi_str_mv 10.1002/adma.201806575
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2210955082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210955082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMotla3LmVABDdTb5JJJlmW1hfUx0JxOWSSjE6ZR01mKP33prQquHF1F_fcj_sdhE4xjDEAuVKmVmMCWABnKdtDQ8wIjhOQbB8NQVIWS56IATryfgEAkgM_RAMKUtKU4SESs9JZ3UVvruzK5j1qi0hFEqJVdxE9K9eVurLRvFVms3xUTdt9WFeXnT1GB4WqvD3ZzRF6vbl-md7F86fb--lkHuuEYhZrokWqpOGWCSFsSkWBC55LbKhJWc61VVInBSFgBVE2yRmEBrwAo0xOmaEjdLnNXbr2s7e-y-rSa1tVqrFt7zNCcCjLQJCAnv9BF23vmvBdoChNE0EkDdR4S2nXeu9skS1dWSu3zjBkG6fZxmn24zQcnO1i-7y25gf_lhgAuQVWZWXX_8Rlk9nD5Df8CxyRgGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233748293</pqid></control><display><type>article</type><title>Direct Writing of a 90 wt% Particle Loading Nanothermite</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Haiyang ; Shen, Jinpeng ; Kline, Dylan J. ; Eckman, Noah ; Agrawal, Niti R. ; Wu, Tao ; Wang, Peng ; Zachariah, Michael R.</creator><creatorcontrib>Wang, Haiyang ; Shen, Jinpeng ; Kline, Dylan J. ; Eckman, Noah ; Agrawal, Niti R. ; Wu, Tao ; Wang, Peng ; Zachariah, Michael R.</creatorcontrib><description>The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products. Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201806575</identifier><identifier>PMID: 30993751</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; direct writing ; Energetic materials ; Flame temperature ; Heat flux ; high loading ; Materials science ; Modulus of elasticity ; nanothermites ; Packing density ; Polyvinylidene fluorides ; Rheological properties ; Thickening agents ; Vinylidene fluoride</subject><ispartof>Advanced materials (Weinheim), 2019-06, Vol.31 (23), p.e1806575-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</citedby><cites>FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</cites><orcidid>0000-0002-4115-3324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30993751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Shen, Jinpeng</creatorcontrib><creatorcontrib>Kline, Dylan J.</creatorcontrib><creatorcontrib>Eckman, Noah</creatorcontrib><creatorcontrib>Agrawal, Niti R.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><title>Direct Writing of a 90 wt% Particle Loading Nanothermite</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products. Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach.</description><subject>3D printing</subject><subject>direct writing</subject><subject>Energetic materials</subject><subject>Flame temperature</subject><subject>Heat flux</subject><subject>high loading</subject><subject>Materials science</subject><subject>Modulus of elasticity</subject><subject>nanothermites</subject><subject>Packing density</subject><subject>Polyvinylidene fluorides</subject><subject>Rheological properties</subject><subject>Thickening agents</subject><subject>Vinylidene fluoride</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMotla3LmVABDdTb5JJJlmW1hfUx0JxOWSSjE6ZR01mKP33prQquHF1F_fcj_sdhE4xjDEAuVKmVmMCWABnKdtDQ8wIjhOQbB8NQVIWS56IATryfgEAkgM_RAMKUtKU4SESs9JZ3UVvruzK5j1qi0hFEqJVdxE9K9eVurLRvFVms3xUTdt9WFeXnT1GB4WqvD3ZzRF6vbl-md7F86fb--lkHuuEYhZrokWqpOGWCSFsSkWBC55LbKhJWc61VVInBSFgBVE2yRmEBrwAo0xOmaEjdLnNXbr2s7e-y-rSa1tVqrFt7zNCcCjLQJCAnv9BF23vmvBdoChNE0EkDdR4S2nXeu9skS1dWSu3zjBkG6fZxmn24zQcnO1i-7y25gf_lhgAuQVWZWXX_8Rlk9nD5Df8CxyRgGk</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wang, Haiyang</creator><creator>Shen, Jinpeng</creator><creator>Kline, Dylan J.</creator><creator>Eckman, Noah</creator><creator>Agrawal, Niti R.</creator><creator>Wu, Tao</creator><creator>Wang, Peng</creator><creator>Zachariah, Michael R.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4115-3324</orcidid></search><sort><creationdate>20190601</creationdate><title>Direct Writing of a 90 wt% Particle Loading Nanothermite</title><author>Wang, Haiyang ; Shen, Jinpeng ; Kline, Dylan J. ; Eckman, Noah ; Agrawal, Niti R. ; Wu, Tao ; Wang, Peng ; Zachariah, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D printing</topic><topic>direct writing</topic><topic>Energetic materials</topic><topic>Flame temperature</topic><topic>Heat flux</topic><topic>high loading</topic><topic>Materials science</topic><topic>Modulus of elasticity</topic><topic>nanothermites</topic><topic>Packing density</topic><topic>Polyvinylidene fluorides</topic><topic>Rheological properties</topic><topic>Thickening agents</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Shen, Jinpeng</creatorcontrib><creatorcontrib>Kline, Dylan J.</creatorcontrib><creatorcontrib>Eckman, Noah</creatorcontrib><creatorcontrib>Agrawal, Niti R.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyang</au><au>Shen, Jinpeng</au><au>Kline, Dylan J.</au><au>Eckman, Noah</au><au>Agrawal, Niti R.</au><au>Wu, Tao</au><au>Wang, Peng</au><au>Zachariah, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Writing of a 90 wt% Particle Loading Nanothermite</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>e1806575</spage><epage>n/a</epage><pages>e1806575-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products. Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30993751</pmid><doi>10.1002/adma.201806575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4115-3324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-06, Vol.31 (23), p.e1806575-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2210955082
source Wiley-Blackwell Read & Publish Collection
subjects 3D printing
direct writing
Energetic materials
Flame temperature
Heat flux
high loading
Materials science
Modulus of elasticity
nanothermites
Packing density
Polyvinylidene fluorides
Rheological properties
Thickening agents
Vinylidene fluoride
title Direct Writing of a 90 wt% Particle Loading Nanothermite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Writing%20of%20a%2090%20wt%25%20Particle%20Loading%20Nanothermite&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Haiyang&rft.date=2019-06-01&rft.volume=31&rft.issue=23&rft.spage=e1806575&rft.epage=n/a&rft.pages=e1806575-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201806575&rft_dat=%3Cproquest_cross%3E2210955082%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233748293&rft_id=info:pmid/30993751&rfr_iscdi=true