Loading…
Direct Writing of a 90 wt% Particle Loading Nanothermite
The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluo...
Saved in:
Published in: | Advanced materials (Weinheim) 2019-06, Vol.31 (23), p.e1806575-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3 |
container_end_page | n/a |
container_issue | 23 |
container_start_page | e1806575 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Wang, Haiyang Shen, Jinpeng Kline, Dylan J. Eckman, Noah Agrawal, Niti R. Wu, Tao Wang, Peng Zachariah, Michael R. |
description | The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products.
Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. |
doi_str_mv | 10.1002/adma.201806575 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2210955082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210955082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMotla3LmVABDdTb5JJJlmW1hfUx0JxOWSSjE6ZR01mKP33prQquHF1F_fcj_sdhE4xjDEAuVKmVmMCWABnKdtDQ8wIjhOQbB8NQVIWS56IATryfgEAkgM_RAMKUtKU4SESs9JZ3UVvruzK5j1qi0hFEqJVdxE9K9eVurLRvFVms3xUTdt9WFeXnT1GB4WqvD3ZzRF6vbl-md7F86fb--lkHuuEYhZrokWqpOGWCSFsSkWBC55LbKhJWc61VVInBSFgBVE2yRmEBrwAo0xOmaEjdLnNXbr2s7e-y-rSa1tVqrFt7zNCcCjLQJCAnv9BF23vmvBdoChNE0EkDdR4S2nXeu9skS1dWSu3zjBkG6fZxmn24zQcnO1i-7y25gf_lhgAuQVWZWXX_8Rlk9nD5Df8CxyRgGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233748293</pqid></control><display><type>article</type><title>Direct Writing of a 90 wt% Particle Loading Nanothermite</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Haiyang ; Shen, Jinpeng ; Kline, Dylan J. ; Eckman, Noah ; Agrawal, Niti R. ; Wu, Tao ; Wang, Peng ; Zachariah, Michael R.</creator><creatorcontrib>Wang, Haiyang ; Shen, Jinpeng ; Kline, Dylan J. ; Eckman, Noah ; Agrawal, Niti R. ; Wu, Tao ; Wang, Peng ; Zachariah, Michael R.</creatorcontrib><description>The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products.
Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201806575</identifier><identifier>PMID: 30993751</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; direct writing ; Energetic materials ; Flame temperature ; Heat flux ; high loading ; Materials science ; Modulus of elasticity ; nanothermites ; Packing density ; Polyvinylidene fluorides ; Rheological properties ; Thickening agents ; Vinylidene fluoride</subject><ispartof>Advanced materials (Weinheim), 2019-06, Vol.31 (23), p.e1806575-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</citedby><cites>FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</cites><orcidid>0000-0002-4115-3324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30993751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Shen, Jinpeng</creatorcontrib><creatorcontrib>Kline, Dylan J.</creatorcontrib><creatorcontrib>Eckman, Noah</creatorcontrib><creatorcontrib>Agrawal, Niti R.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><title>Direct Writing of a 90 wt% Particle Loading Nanothermite</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products.
Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach.</description><subject>3D printing</subject><subject>direct writing</subject><subject>Energetic materials</subject><subject>Flame temperature</subject><subject>Heat flux</subject><subject>high loading</subject><subject>Materials science</subject><subject>Modulus of elasticity</subject><subject>nanothermites</subject><subject>Packing density</subject><subject>Polyvinylidene fluorides</subject><subject>Rheological properties</subject><subject>Thickening agents</subject><subject>Vinylidene fluoride</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMotla3LmVABDdTb5JJJlmW1hfUx0JxOWSSjE6ZR01mKP33prQquHF1F_fcj_sdhE4xjDEAuVKmVmMCWABnKdtDQ8wIjhOQbB8NQVIWS56IATryfgEAkgM_RAMKUtKU4SESs9JZ3UVvruzK5j1qi0hFEqJVdxE9K9eVurLRvFVms3xUTdt9WFeXnT1GB4WqvD3ZzRF6vbl-md7F86fb--lkHuuEYhZrokWqpOGWCSFsSkWBC55LbKhJWc61VVInBSFgBVE2yRmEBrwAo0xOmaEjdLnNXbr2s7e-y-rSa1tVqrFt7zNCcCjLQJCAnv9BF23vmvBdoChNE0EkDdR4S2nXeu9skS1dWSu3zjBkG6fZxmn24zQcnO1i-7y25gf_lhgAuQVWZWXX_8Rlk9nD5Df8CxyRgGk</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wang, Haiyang</creator><creator>Shen, Jinpeng</creator><creator>Kline, Dylan J.</creator><creator>Eckman, Noah</creator><creator>Agrawal, Niti R.</creator><creator>Wu, Tao</creator><creator>Wang, Peng</creator><creator>Zachariah, Michael R.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4115-3324</orcidid></search><sort><creationdate>20190601</creationdate><title>Direct Writing of a 90 wt% Particle Loading Nanothermite</title><author>Wang, Haiyang ; Shen, Jinpeng ; Kline, Dylan J. ; Eckman, Noah ; Agrawal, Niti R. ; Wu, Tao ; Wang, Peng ; Zachariah, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D printing</topic><topic>direct writing</topic><topic>Energetic materials</topic><topic>Flame temperature</topic><topic>Heat flux</topic><topic>high loading</topic><topic>Materials science</topic><topic>Modulus of elasticity</topic><topic>nanothermites</topic><topic>Packing density</topic><topic>Polyvinylidene fluorides</topic><topic>Rheological properties</topic><topic>Thickening agents</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haiyang</creatorcontrib><creatorcontrib>Shen, Jinpeng</creatorcontrib><creatorcontrib>Kline, Dylan J.</creatorcontrib><creatorcontrib>Eckman, Noah</creatorcontrib><creatorcontrib>Agrawal, Niti R.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zachariah, Michael R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haiyang</au><au>Shen, Jinpeng</au><au>Kline, Dylan J.</au><au>Eckman, Noah</au><au>Agrawal, Niti R.</au><au>Wu, Tao</au><au>Wang, Peng</au><au>Zachariah, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Writing of a 90 wt% Particle Loading Nanothermite</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>e1806575</spage><epage>n/a</epage><pages>e1806575-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The additive manufacturing of energetic materials has received worldwide attention. Here, an ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach. The key additive in the ink is a hybrid polymer of poly(vinylidene fluoride) (PVDF) and hydroxy propyl methyl cellulose (HPMC) in which the former serves as an energetic initiator and a binder, and the latter is a thickening agent and the other binder, which can form a gel. The rheological shear‐thinning properties of the ink are critical to making the formulation at such high loadings printable. The Young's modulus of the printed stick is found to compare favorably with that of poly(tetrafluoroethylene) (PTFE), with a particle packing density at the theoretical maximum. The linear burn rate, mass burn rate, flame temperature, and heat flux are found to be easily adjusted by varying the fuel/oxidizer ratio. The average flame temperatures are as high as ≈2800 K with near‐complete combustion being evident upon examination of the postcombustion products.
Particle loading is a critical parameter that is routinely used for benchmarking the energy density and energy release rate of nanoenergetic materials, including propellants, explosives, and pyrotechnics. An ink formulation is developed with only 10 wt% of polymers, which can bind a 90 wt% nanothermite using a simple direct‐writing approach.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30993751</pmid><doi>10.1002/adma.201806575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4115-3324</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-06, Vol.31 (23), p.e1806575-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2210955082 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3D printing direct writing Energetic materials Flame temperature Heat flux high loading Materials science Modulus of elasticity nanothermites Packing density Polyvinylidene fluorides Rheological properties Thickening agents Vinylidene fluoride |
title | Direct Writing of a 90 wt% Particle Loading Nanothermite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Writing%20of%20a%2090%20wt%25%20Particle%20Loading%20Nanothermite&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Haiyang&rft.date=2019-06-01&rft.volume=31&rft.issue=23&rft.spage=e1806575&rft.epage=n/a&rft.pages=e1806575-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201806575&rft_dat=%3Cproquest_cross%3E2210955082%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4315-c2c87a9d6e5888e738f1f6b91d3d75b6cea9c4f220e82ae4b501526f0dadb35d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233748293&rft_id=info:pmid/30993751&rfr_iscdi=true |