Loading…

Angstrom Scale Chemical Analysis of Metal Supported Trans- and Cis-Regioisomers by Ultrahigh Vacuum Tip-Enhanced Raman Mapping

Real space chemical analysis of two structurally very similar components, that is, regioisomers lies at the heart of heterogeneous catalysis reactions, modern-age electronic devices, and various other surface related problems in surface science and nanotechnology. One of the big challenges in surfac...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2019-05, Vol.19 (5), p.3267-3272
Main Authors: Mahapatra, Sayantan, Ning, Yingying, Schultz, Jeremy F, Li, Linfei, Zhang, Jun-Long, Jiang, Nan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Real space chemical analysis of two structurally very similar components, that is, regioisomers lies at the heart of heterogeneous catalysis reactions, modern-age electronic devices, and various other surface related problems in surface science and nanotechnology. One of the big challenges in surface chemistry is to identify different surface adsorbed molecules and analyze their chemical properties individually. Herein, we report a topological and chemical analysis of two regioisomers, trans- and cis-tetrakispentafluorophenylporphodilactone (trans- and cis-H2F20TPPDL) molecules by high-resolution scanning tunneling microscopy, and ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). Both isomeric structures are investigated individually on Ag(100) at liquid nitrogen temperature. Following that, we have successfully distinguished these two regioisomeric molecules simultaneously through TERS with an angstrom scale (8 Ă…) spatial resolution. Also, the two-component organic heterojunction has been characterized at large scale using high-resolution two-dimensional mapping. Combined with time-dependent density functional theory simulations, we explain the TERS spectral discrepancies for both isomers in the fingerprint region.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b00826