Loading…
Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors
Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report h...
Saved in:
Published in: | Biomacromolecules 2019-05, Vol.20 (5), p.2096-2104 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3 |
container_end_page | 2104 |
container_issue | 5 |
container_start_page | 2096 |
container_title | Biomacromolecules |
container_volume | 20 |
creator | Tong, Ruiping Chen, Guangxue Pan, Danhong Qi, Haisong Li, Ren’ai Tian, Junfei Lu, Fachuang He, Minghui |
description | Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics. |
doi_str_mv | 10.1021/acs.biomac.9b00322 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2211327033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211327033</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwBxhQRpYEf8T5GFFEaaVKDIWBybKdlzZVEhc7kei_x20KI4uf9XTulX0Quic4IpiSJ6ldpGrTSh3lCmNG6QWaEk6TME4wvTzdeZimeTpBN87tMMY5i_k1mjCc5zxj8RR9LurNtjkE695Cr7dSNRDIrgwK0-4tOFcfFwU0zdAYB8HSdLUOFofSmg00LqiMDeYNfJ8w3yHrLlhD54x1t-iqko2Du_OcoY_5y3uxCFdvr8vieRXKGGd9SCpVZhmP_aGx4phCrliSAGiucaXjUue0SiHmHGjJFVRUUs-qMgGpMijZDD2OvXtrvgZwvWhrp_2LZQdmcIJSQhhNMWMepSOqrXHOQiX2tm6lPQiCxVGp8ErFqFSclfrQw7l_UC2Uf5Ffhx6IRuAY3pnBdv67_zX-ALTqhhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211327033</pqid></control><display><type>article</type><title>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tong, Ruiping ; Chen, Guangxue ; Pan, Danhong ; Qi, Haisong ; Li, Ren’ai ; Tian, Junfei ; Lu, Fachuang ; He, Minghui</creator><creatorcontrib>Tong, Ruiping ; Chen, Guangxue ; Pan, Danhong ; Qi, Haisong ; Li, Ren’ai ; Tian, Junfei ; Lu, Fachuang ; He, Minghui</creatorcontrib><description>Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.9b00322</identifier><identifier>PMID: 30995834</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Biomacromolecules, 2019-05, Vol.20 (5), p.2096-2104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</citedby><cites>FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</cites><orcidid>0000-0002-7564-7832 ; 0000-0002-6418-8992 ; 0000-0001-7493-3573 ; 0000-0001-7957-854X ; 0000-0002-5659-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30995834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Ruiping</creatorcontrib><creatorcontrib>Chen, Guangxue</creatorcontrib><creatorcontrib>Pan, Danhong</creatorcontrib><creatorcontrib>Qi, Haisong</creatorcontrib><creatorcontrib>Li, Ren’ai</creatorcontrib><creatorcontrib>Tian, Junfei</creatorcontrib><creatorcontrib>Lu, Fachuang</creatorcontrib><creatorcontrib>He, Minghui</creatorcontrib><title>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EoqXwBxhQRpYEf8T5GFFEaaVKDIWBybKdlzZVEhc7kei_x20KI4uf9XTulX0Quic4IpiSJ6ldpGrTSh3lCmNG6QWaEk6TME4wvTzdeZimeTpBN87tMMY5i_k1mjCc5zxj8RR9LurNtjkE695Cr7dSNRDIrgwK0-4tOFcfFwU0zdAYB8HSdLUOFofSmg00LqiMDeYNfJ8w3yHrLlhD54x1t-iqko2Du_OcoY_5y3uxCFdvr8vieRXKGGd9SCpVZhmP_aGx4phCrliSAGiucaXjUue0SiHmHGjJFVRUUs-qMgGpMijZDD2OvXtrvgZwvWhrp_2LZQdmcIJSQhhNMWMepSOqrXHOQiX2tm6lPQiCxVGp8ErFqFSclfrQw7l_UC2Uf5Ffhx6IRuAY3pnBdv67_zX-ALTqhhM</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Tong, Ruiping</creator><creator>Chen, Guangxue</creator><creator>Pan, Danhong</creator><creator>Qi, Haisong</creator><creator>Li, Ren’ai</creator><creator>Tian, Junfei</creator><creator>Lu, Fachuang</creator><creator>He, Minghui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7564-7832</orcidid><orcidid>https://orcid.org/0000-0002-6418-8992</orcidid><orcidid>https://orcid.org/0000-0001-7493-3573</orcidid><orcidid>https://orcid.org/0000-0001-7957-854X</orcidid><orcidid>https://orcid.org/0000-0002-5659-6320</orcidid></search><sort><creationdate>20190513</creationdate><title>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</title><author>Tong, Ruiping ; Chen, Guangxue ; Pan, Danhong ; Qi, Haisong ; Li, Ren’ai ; Tian, Junfei ; Lu, Fachuang ; He, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Ruiping</creatorcontrib><creatorcontrib>Chen, Guangxue</creatorcontrib><creatorcontrib>Pan, Danhong</creatorcontrib><creatorcontrib>Qi, Haisong</creatorcontrib><creatorcontrib>Li, Ren’ai</creatorcontrib><creatorcontrib>Tian, Junfei</creatorcontrib><creatorcontrib>Lu, Fachuang</creatorcontrib><creatorcontrib>He, Minghui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Ruiping</au><au>Chen, Guangxue</au><au>Pan, Danhong</au><au>Qi, Haisong</au><au>Li, Ren’ai</au><au>Tian, Junfei</au><au>Lu, Fachuang</au><au>He, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2019-05-13</date><risdate>2019</risdate><volume>20</volume><issue>5</issue><spage>2096</spage><epage>2104</epage><pages>2096-2104</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30995834</pmid><doi>10.1021/acs.biomac.9b00322</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7564-7832</orcidid><orcidid>https://orcid.org/0000-0002-6418-8992</orcidid><orcidid>https://orcid.org/0000-0001-7493-3573</orcidid><orcidid>https://orcid.org/0000-0001-7957-854X</orcidid><orcidid>https://orcid.org/0000-0002-5659-6320</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2019-05, Vol.20 (5), p.2096-2104 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_2211327033 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stretchable%20and%20Compressible%20Cellulose%20Ionic%20Hydrogels%20for%20Flexible%20Strain%20Sensors&rft.jtitle=Biomacromolecules&rft.au=Tong,%20Ruiping&rft.date=2019-05-13&rft.volume=20&rft.issue=5&rft.spage=2096&rft.epage=2104&rft.pages=2096-2104&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.9b00322&rft_dat=%3Cproquest_cross%3E2211327033%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211327033&rft_id=info:pmid/30995834&rfr_iscdi=true |