Loading…

Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors

Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report h...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2019-05, Vol.20 (5), p.2096-2104
Main Authors: Tong, Ruiping, Chen, Guangxue, Pan, Danhong, Qi, Haisong, Li, Ren’ai, Tian, Junfei, Lu, Fachuang, He, Minghui
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3
cites cdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3
container_end_page 2104
container_issue 5
container_start_page 2096
container_title Biomacromolecules
container_volume 20
creator Tong, Ruiping
Chen, Guangxue
Pan, Danhong
Qi, Haisong
Li, Ren’ai
Tian, Junfei
Lu, Fachuang
He, Minghui
description Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.
doi_str_mv 10.1021/acs.biomac.9b00322
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2211327033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211327033</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwBxhQRpYEf8T5GFFEaaVKDIWBybKdlzZVEhc7kei_x20KI4uf9XTulX0Quic4IpiSJ6ldpGrTSh3lCmNG6QWaEk6TME4wvTzdeZimeTpBN87tMMY5i_k1mjCc5zxj8RR9LurNtjkE695Cr7dSNRDIrgwK0-4tOFcfFwU0zdAYB8HSdLUOFofSmg00LqiMDeYNfJ8w3yHrLlhD54x1t-iqko2Du_OcoY_5y3uxCFdvr8vieRXKGGd9SCpVZhmP_aGx4phCrliSAGiucaXjUue0SiHmHGjJFVRUUs-qMgGpMijZDD2OvXtrvgZwvWhrp_2LZQdmcIJSQhhNMWMepSOqrXHOQiX2tm6lPQiCxVGp8ErFqFSclfrQw7l_UC2Uf5Ffhx6IRuAY3pnBdv67_zX-ALTqhhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211327033</pqid></control><display><type>article</type><title>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tong, Ruiping ; Chen, Guangxue ; Pan, Danhong ; Qi, Haisong ; Li, Ren’ai ; Tian, Junfei ; Lu, Fachuang ; He, Minghui</creator><creatorcontrib>Tong, Ruiping ; Chen, Guangxue ; Pan, Danhong ; Qi, Haisong ; Li, Ren’ai ; Tian, Junfei ; Lu, Fachuang ; He, Minghui</creatorcontrib><description>Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.9b00322</identifier><identifier>PMID: 30995834</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Biomacromolecules, 2019-05, Vol.20 (5), p.2096-2104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</citedby><cites>FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</cites><orcidid>0000-0002-7564-7832 ; 0000-0002-6418-8992 ; 0000-0001-7493-3573 ; 0000-0001-7957-854X ; 0000-0002-5659-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30995834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Ruiping</creatorcontrib><creatorcontrib>Chen, Guangxue</creatorcontrib><creatorcontrib>Pan, Danhong</creatorcontrib><creatorcontrib>Qi, Haisong</creatorcontrib><creatorcontrib>Li, Ren’ai</creatorcontrib><creatorcontrib>Tian, Junfei</creatorcontrib><creatorcontrib>Lu, Fachuang</creatorcontrib><creatorcontrib>He, Minghui</creatorcontrib><title>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EoqXwBxhQRpYEf8T5GFFEaaVKDIWBybKdlzZVEhc7kei_x20KI4uf9XTulX0Quic4IpiSJ6ldpGrTSh3lCmNG6QWaEk6TME4wvTzdeZimeTpBN87tMMY5i_k1mjCc5zxj8RR9LurNtjkE695Cr7dSNRDIrgwK0-4tOFcfFwU0zdAYB8HSdLUOFofSmg00LqiMDeYNfJ8w3yHrLlhD54x1t-iqko2Du_OcoY_5y3uxCFdvr8vieRXKGGd9SCpVZhmP_aGx4phCrliSAGiucaXjUue0SiHmHGjJFVRUUs-qMgGpMijZDD2OvXtrvgZwvWhrp_2LZQdmcIJSQhhNMWMepSOqrXHOQiX2tm6lPQiCxVGp8ErFqFSclfrQw7l_UC2Uf5Ffhx6IRuAY3pnBdv67_zX-ALTqhhM</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Tong, Ruiping</creator><creator>Chen, Guangxue</creator><creator>Pan, Danhong</creator><creator>Qi, Haisong</creator><creator>Li, Ren’ai</creator><creator>Tian, Junfei</creator><creator>Lu, Fachuang</creator><creator>He, Minghui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7564-7832</orcidid><orcidid>https://orcid.org/0000-0002-6418-8992</orcidid><orcidid>https://orcid.org/0000-0001-7493-3573</orcidid><orcidid>https://orcid.org/0000-0001-7957-854X</orcidid><orcidid>https://orcid.org/0000-0002-5659-6320</orcidid></search><sort><creationdate>20190513</creationdate><title>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</title><author>Tong, Ruiping ; Chen, Guangxue ; Pan, Danhong ; Qi, Haisong ; Li, Ren’ai ; Tian, Junfei ; Lu, Fachuang ; He, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Ruiping</creatorcontrib><creatorcontrib>Chen, Guangxue</creatorcontrib><creatorcontrib>Pan, Danhong</creatorcontrib><creatorcontrib>Qi, Haisong</creatorcontrib><creatorcontrib>Li, Ren’ai</creatorcontrib><creatorcontrib>Tian, Junfei</creatorcontrib><creatorcontrib>Lu, Fachuang</creatorcontrib><creatorcontrib>He, Minghui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Ruiping</au><au>Chen, Guangxue</au><au>Pan, Danhong</au><au>Qi, Haisong</au><au>Li, Ren’ai</au><au>Tian, Junfei</au><au>Lu, Fachuang</au><au>He, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2019-05-13</date><risdate>2019</risdate><volume>20</volume><issue>5</issue><spage>2096</spage><epage>2104</epage><pages>2096-2104</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm–1) and can be worked at −20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30995834</pmid><doi>10.1021/acs.biomac.9b00322</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7564-7832</orcidid><orcidid>https://orcid.org/0000-0002-6418-8992</orcidid><orcidid>https://orcid.org/0000-0001-7493-3573</orcidid><orcidid>https://orcid.org/0000-0001-7957-854X</orcidid><orcidid>https://orcid.org/0000-0002-5659-6320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2019-05, Vol.20 (5), p.2096-2104
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_2211327033
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stretchable%20and%20Compressible%20Cellulose%20Ionic%20Hydrogels%20for%20Flexible%20Strain%20Sensors&rft.jtitle=Biomacromolecules&rft.au=Tong,%20Ruiping&rft.date=2019-05-13&rft.volume=20&rft.issue=5&rft.spage=2096&rft.epage=2104&rft.pages=2096-2104&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.9b00322&rft_dat=%3Cproquest_cross%3E2211327033%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a408t-1fbd8854d88c0b502e9b366eec5c0fc4dc92f7e455e2d5bef2a2d88bd6eab8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211327033&rft_id=info:pmid/30995834&rfr_iscdi=true