Loading…
The formation and effect of mannitol hemihydrate on the stability of monoclonal antibody in the lyophilized state
[Display omitted] Crystalline bulking agent in lyophilized biopharmaceutical formulations provides an elegant lyophilized cake structure and allows aggressive primary drying conditions. The interplay between amorphous and crystalline state of excipients heavily influence the stability of lyophilized...
Saved in:
Published in: | International journal of pharmaceutics 2019-06, Vol.564, p.106-116 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Crystalline bulking agent in lyophilized biopharmaceutical formulations provides an elegant lyophilized cake structure and allows aggressive primary drying conditions. The interplay between amorphous and crystalline state of excipients heavily influence the stability of lyophilized biological products and should be carefully evaluated in the formulation and process development phase. This study focuses on: (1) elucidating the influence of formulation and lyophilization process variables on the formation of different states of mannitol and (2) its impact on model monoclonal antibody stability when compared to sucrose. The main aim of the present research work was to study the influence of different mannitol to sucrose ratios and monoclonal antibody concentrations on mannitol physical form established during lyophilization. In addition, also the effect of process variables on mannitol hemihydrate (MHH) formation was under investigation.
Thermal analysis and powder X-ray diffraction results revealed that the ratio between sucrose and mannitol and mAb concentration have a decisive impact on mannitol crystallization. Namely, increasing amount of mannitol and monoclonal antibody resulted in decreasing formation of MHH. From the process parameters investigated, a higher secondary drying temperature has the biggest impact on the complete dehydration of MHH. Specifically, higher secondary drying temperature reflected in complete dehydration of MHH. Annealing temperature was shown to affect the MHH content in the final product, wherein the higher annealing temperature was preferential for formation of anhydrous mannitol. Temperature stress stability study revealed that the most important parameter influencing monoclonal antibody stability is the ratio of protein to sucrose. Contrary to widespread assumption, we did not detect any impact of MHH on the stability of the investigated monoclonal antibody. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2019.04.044 |