Loading…

Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variati...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2019-04, Vol.364 (6437), p.264-268
Main Authors: Li, Fei, Cabral, Matthew J, Xu, Bin, Cheng Zhenxiang, Dickey, Elizabeth C, LeBeau, James M, Wang, Jianli, Luo, Jun, Taylor, Samuel, Hackenberger Wesley, Bellaiche Laurent, Xu, Zhuo, Long-Qing, Chen, Shrout, Thomas R, Zhang, Shujun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 268
container_issue 6437
container_start_page 264
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Li, Fei
Cabral, Matthew J
Xu, Bin
Cheng Zhenxiang
Dickey, Elizabeth C
LeBeau, James M
Wang, Jianli
Luo, Jun
Taylor, Samuel
Hackenberger Wesley
Bellaiche Laurent
Xu, Zhuo
Long-Qing, Chen
Shrout, Thomas R
Zhang, Shujun
description Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.
doi_str_mv 10.1126/science.aaw2781
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2211946296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211946296</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-daa660ffaef2021a9ce414edf0c8b2f8a4462d6cad6763d6fbd643dd2a0140e73</originalsourceid><addsrcrecordid>eNpdjkFLwzAYhoMoOKdnrwUv85Dty5csbY8ydCrTDZznkSZfRkbX1qZD5q-3qCdPz-F9eHgZuxYwFgL1JNpAlaWxMZ-YZuKEDQTkU54jyFM2AJCaZ5BOz9lFjDuAfsvlgD3Pg6m6pAn0VVNJtmuDDd0xqX3ytueubsglq2L0shUT-VrgRN4uJV8V67CUSQzVtqTEtsfYmTJesjPfg67-OGTvD_fr2SNfLOdPs7sFb1DojjtjtAbvDXkEFCa3pIQi58FmBfrMKKXRaWucTrV02hdOK-kcGhAKKJVDNvrtNm39caDYbfYhWipLU1F9iBtEIfK-ketevfmn7upDW_XvfiypATMlvwGyvV0P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211360284</pqid></control><display><type>article</type><title>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Li, Fei ; Cabral, Matthew J ; Xu, Bin ; Cheng Zhenxiang ; Dickey, Elizabeth C ; LeBeau, James M ; Wang, Jianli ; Luo, Jun ; Taylor, Samuel ; Hackenberger Wesley ; Bellaiche Laurent ; Xu, Zhuo ; Long-Qing, Chen ; Shrout, Thomas R ; Zhang, Shujun</creator><creatorcontrib>Li, Fei ; Cabral, Matthew J ; Xu, Bin ; Cheng Zhenxiang ; Dickey, Elizabeth C ; LeBeau, James M ; Wang, Jianli ; Luo, Jun ; Taylor, Samuel ; Hackenberger Wesley ; Bellaiche Laurent ; Xu, Zhuo ; Long-Qing, Chen ; Shrout, Thomas R ; Zhang, Shujun</creatorcontrib><description>Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaw2781</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Charge materials ; Crystal growth ; Crystals ; Ferroelectric crystals ; Ferroelectric materials ; Ferroelectricity ; First principles ; Heterogeneity ; Lead ; Lead titanates ; Mathematical analysis ; Piezoelectricity ; Properties (attributes) ; Rare earth elements ; Relaxors ; Samarium ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Single crystals ; Transducers ; Transmission electron microscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.264-268</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Cabral, Matthew J</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Cheng Zhenxiang</creatorcontrib><creatorcontrib>Dickey, Elizabeth C</creatorcontrib><creatorcontrib>LeBeau, James M</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Taylor, Samuel</creatorcontrib><creatorcontrib>Hackenberger Wesley</creatorcontrib><creatorcontrib>Bellaiche Laurent</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Long-Qing, Chen</creatorcontrib><creatorcontrib>Shrout, Thomas R</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><title>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</title><title>Science (American Association for the Advancement of Science)</title><description>Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.</description><subject>Charge materials</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Ferroelectric crystals</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Heterogeneity</subject><subject>Lead</subject><subject>Lead titanates</subject><subject>Mathematical analysis</subject><subject>Piezoelectricity</subject><subject>Properties (attributes)</subject><subject>Rare earth elements</subject><subject>Relaxors</subject><subject>Samarium</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Single crystals</subject><subject>Transducers</subject><subject>Transmission electron microscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLwzAYhoMoOKdnrwUv85Dty5csbY8ydCrTDZznkSZfRkbX1qZD5q-3qCdPz-F9eHgZuxYwFgL1JNpAlaWxMZ-YZuKEDQTkU54jyFM2AJCaZ5BOz9lFjDuAfsvlgD3Pg6m6pAn0VVNJtmuDDd0xqX3ytueubsglq2L0shUT-VrgRN4uJV8V67CUSQzVtqTEtsfYmTJesjPfg67-OGTvD_fr2SNfLOdPs7sFb1DojjtjtAbvDXkEFCa3pIQi58FmBfrMKKXRaWucTrV02hdOK-kcGhAKKJVDNvrtNm39caDYbfYhWipLU1F9iBtEIfK-ketevfmn7upDW_XvfiypATMlvwGyvV0P</recordid><startdate>20190419</startdate><enddate>20190419</enddate><creator>Li, Fei</creator><creator>Cabral, Matthew J</creator><creator>Xu, Bin</creator><creator>Cheng Zhenxiang</creator><creator>Dickey, Elizabeth C</creator><creator>LeBeau, James M</creator><creator>Wang, Jianli</creator><creator>Luo, Jun</creator><creator>Taylor, Samuel</creator><creator>Hackenberger Wesley</creator><creator>Bellaiche Laurent</creator><creator>Xu, Zhuo</creator><creator>Long-Qing, Chen</creator><creator>Shrout, Thomas R</creator><creator>Zhang, Shujun</creator><general>The American Association for the Advancement of Science</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190419</creationdate><title>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</title><author>Li, Fei ; Cabral, Matthew J ; Xu, Bin ; Cheng Zhenxiang ; Dickey, Elizabeth C ; LeBeau, James M ; Wang, Jianli ; Luo, Jun ; Taylor, Samuel ; Hackenberger Wesley ; Bellaiche Laurent ; Xu, Zhuo ; Long-Qing, Chen ; Shrout, Thomas R ; Zhang, Shujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-daa660ffaef2021a9ce414edf0c8b2f8a4462d6cad6763d6fbd643dd2a0140e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge materials</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Ferroelectric crystals</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Heterogeneity</topic><topic>Lead</topic><topic>Lead titanates</topic><topic>Mathematical analysis</topic><topic>Piezoelectricity</topic><topic>Properties (attributes)</topic><topic>Rare earth elements</topic><topic>Relaxors</topic><topic>Samarium</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Single crystals</topic><topic>Transducers</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Cabral, Matthew J</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Cheng Zhenxiang</creatorcontrib><creatorcontrib>Dickey, Elizabeth C</creatorcontrib><creatorcontrib>LeBeau, James M</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Taylor, Samuel</creatorcontrib><creatorcontrib>Hackenberger Wesley</creatorcontrib><creatorcontrib>Bellaiche Laurent</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Long-Qing, Chen</creatorcontrib><creatorcontrib>Shrout, Thomas R</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fei</au><au>Cabral, Matthew J</au><au>Xu, Bin</au><au>Cheng Zhenxiang</au><au>Dickey, Elizabeth C</au><au>LeBeau, James M</au><au>Wang, Jianli</au><au>Luo, Jun</au><au>Taylor, Samuel</au><au>Hackenberger Wesley</au><au>Bellaiche Laurent</au><au>Xu, Zhuo</au><au>Long-Qing, Chen</au><au>Shrout, Thomas R</au><au>Zhang, Shujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2019-04-19</date><risdate>2019</risdate><volume>364</volume><issue>6437</issue><spage>264</spage><epage>268</epage><pages>264-268</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aaw2781</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.264-268
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2211946296
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Charge materials
Crystal growth
Crystals
Ferroelectric crystals
Ferroelectric materials
Ferroelectricity
First principles
Heterogeneity
Lead
Lead titanates
Mathematical analysis
Piezoelectricity
Properties (attributes)
Rare earth elements
Relaxors
Samarium
Scanning electron microscopy
Scanning transmission electron microscopy
Single crystals
Transducers
Transmission electron microscopy
title Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20piezoelectricity%20of%20Sm-doped%20Pb(Mg1/3Nb2/3)O3-PbTiO3%20single%20crystals&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Li,%20Fei&rft.date=2019-04-19&rft.volume=364&rft.issue=6437&rft.spage=264&rft.epage=268&rft.pages=264-268&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaw2781&rft_dat=%3Cproquest%3E2211946296%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-daa660ffaef2021a9ce414edf0c8b2f8a4462d6cad6763d6fbd643dd2a0140e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211360284&rft_id=info:pmid/&rfr_iscdi=true