Loading…
Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals
Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variati...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2019-04, Vol.364 (6437), p.264-268 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 268 |
container_issue | 6437 |
container_start_page | 264 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Li, Fei Cabral, Matthew J Xu, Bin Cheng Zhenxiang Dickey, Elizabeth C LeBeau, James M Wang, Jianli Luo, Jun Taylor, Samuel Hackenberger Wesley Bellaiche Laurent Xu, Zhuo Long-Qing, Chen Shrout, Thomas R Zhang, Shujun |
description | Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals. |
doi_str_mv | 10.1126/science.aaw2781 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2211946296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211946296</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-daa660ffaef2021a9ce414edf0c8b2f8a4462d6cad6763d6fbd643dd2a0140e73</originalsourceid><addsrcrecordid>eNpdjkFLwzAYhoMoOKdnrwUv85Dty5csbY8ydCrTDZznkSZfRkbX1qZD5q-3qCdPz-F9eHgZuxYwFgL1JNpAlaWxMZ-YZuKEDQTkU54jyFM2AJCaZ5BOz9lFjDuAfsvlgD3Pg6m6pAn0VVNJtmuDDd0xqX3ytueubsglq2L0shUT-VrgRN4uJV8V67CUSQzVtqTEtsfYmTJesjPfg67-OGTvD_fr2SNfLOdPs7sFb1DojjtjtAbvDXkEFCa3pIQi58FmBfrMKKXRaWucTrV02hdOK-kcGhAKKJVDNvrtNm39caDYbfYhWipLU1F9iBtEIfK-ketevfmn7upDW_XvfiypATMlvwGyvV0P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211360284</pqid></control><display><type>article</type><title>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Li, Fei ; Cabral, Matthew J ; Xu, Bin ; Cheng Zhenxiang ; Dickey, Elizabeth C ; LeBeau, James M ; Wang, Jianli ; Luo, Jun ; Taylor, Samuel ; Hackenberger Wesley ; Bellaiche Laurent ; Xu, Zhuo ; Long-Qing, Chen ; Shrout, Thomas R ; Zhang, Shujun</creator><creatorcontrib>Li, Fei ; Cabral, Matthew J ; Xu, Bin ; Cheng Zhenxiang ; Dickey, Elizabeth C ; LeBeau, James M ; Wang, Jianli ; Luo, Jun ; Taylor, Samuel ; Hackenberger Wesley ; Bellaiche Laurent ; Xu, Zhuo ; Long-Qing, Chen ; Shrout, Thomas R ; Zhang, Shujun</creatorcontrib><description>Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaw2781</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Charge materials ; Crystal growth ; Crystals ; Ferroelectric crystals ; Ferroelectric materials ; Ferroelectricity ; First principles ; Heterogeneity ; Lead ; Lead titanates ; Mathematical analysis ; Piezoelectricity ; Properties (attributes) ; Rare earth elements ; Relaxors ; Samarium ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Single crystals ; Transducers ; Transmission electron microscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.264-268</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Cabral, Matthew J</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Cheng Zhenxiang</creatorcontrib><creatorcontrib>Dickey, Elizabeth C</creatorcontrib><creatorcontrib>LeBeau, James M</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Taylor, Samuel</creatorcontrib><creatorcontrib>Hackenberger Wesley</creatorcontrib><creatorcontrib>Bellaiche Laurent</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Long-Qing, Chen</creatorcontrib><creatorcontrib>Shrout, Thomas R</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><title>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</title><title>Science (American Association for the Advancement of Science)</title><description>Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.</description><subject>Charge materials</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Ferroelectric crystals</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Heterogeneity</subject><subject>Lead</subject><subject>Lead titanates</subject><subject>Mathematical analysis</subject><subject>Piezoelectricity</subject><subject>Properties (attributes)</subject><subject>Rare earth elements</subject><subject>Relaxors</subject><subject>Samarium</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Single crystals</subject><subject>Transducers</subject><subject>Transmission electron microscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLwzAYhoMoOKdnrwUv85Dty5csbY8ydCrTDZznkSZfRkbX1qZD5q-3qCdPz-F9eHgZuxYwFgL1JNpAlaWxMZ-YZuKEDQTkU54jyFM2AJCaZ5BOz9lFjDuAfsvlgD3Pg6m6pAn0VVNJtmuDDd0xqX3ytueubsglq2L0shUT-VrgRN4uJV8V67CUSQzVtqTEtsfYmTJesjPfg67-OGTvD_fr2SNfLOdPs7sFb1DojjtjtAbvDXkEFCa3pIQi58FmBfrMKKXRaWucTrV02hdOK-kcGhAKKJVDNvrtNm39caDYbfYhWipLU1F9iBtEIfK-ketevfmn7upDW_XvfiypATMlvwGyvV0P</recordid><startdate>20190419</startdate><enddate>20190419</enddate><creator>Li, Fei</creator><creator>Cabral, Matthew J</creator><creator>Xu, Bin</creator><creator>Cheng Zhenxiang</creator><creator>Dickey, Elizabeth C</creator><creator>LeBeau, James M</creator><creator>Wang, Jianli</creator><creator>Luo, Jun</creator><creator>Taylor, Samuel</creator><creator>Hackenberger Wesley</creator><creator>Bellaiche Laurent</creator><creator>Xu, Zhuo</creator><creator>Long-Qing, Chen</creator><creator>Shrout, Thomas R</creator><creator>Zhang, Shujun</creator><general>The American Association for the Advancement of Science</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190419</creationdate><title>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</title><author>Li, Fei ; Cabral, Matthew J ; Xu, Bin ; Cheng Zhenxiang ; Dickey, Elizabeth C ; LeBeau, James M ; Wang, Jianli ; Luo, Jun ; Taylor, Samuel ; Hackenberger Wesley ; Bellaiche Laurent ; Xu, Zhuo ; Long-Qing, Chen ; Shrout, Thomas R ; Zhang, Shujun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-daa660ffaef2021a9ce414edf0c8b2f8a4462d6cad6763d6fbd643dd2a0140e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge materials</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Ferroelectric crystals</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Heterogeneity</topic><topic>Lead</topic><topic>Lead titanates</topic><topic>Mathematical analysis</topic><topic>Piezoelectricity</topic><topic>Properties (attributes)</topic><topic>Rare earth elements</topic><topic>Relaxors</topic><topic>Samarium</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Single crystals</topic><topic>Transducers</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Cabral, Matthew J</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Cheng Zhenxiang</creatorcontrib><creatorcontrib>Dickey, Elizabeth C</creatorcontrib><creatorcontrib>LeBeau, James M</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Taylor, Samuel</creatorcontrib><creatorcontrib>Hackenberger Wesley</creatorcontrib><creatorcontrib>Bellaiche Laurent</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Long-Qing, Chen</creatorcontrib><creatorcontrib>Shrout, Thomas R</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fei</au><au>Cabral, Matthew J</au><au>Xu, Bin</au><au>Cheng Zhenxiang</au><au>Dickey, Elizabeth C</au><au>LeBeau, James M</au><au>Wang, Jianli</au><au>Luo, Jun</au><au>Taylor, Samuel</au><au>Hackenberger Wesley</au><au>Bellaiche Laurent</au><au>Xu, Zhuo</au><au>Long-Qing, Chen</au><au>Shrout, Thomas R</au><au>Zhang, Shujun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2019-04-19</date><risdate>2019</risdate><volume>364</volume><issue>6437</issue><spage>264</spage><epage>268</epage><pages>264-268</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Samarium supersensorsPiezoelectric materials produce electric charge in response to changes in stress and are thus good sensor materials. One challenge has been growing single-crystal piezoelectrics with uniform properties. As of now, much of the crystal is discarded because of compositional variations. Li et al. synthesized single crystals of samarium-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 that have uniform and extremely high piezoelectric properties (see the Perspective by Hlinka). These crystals are ideal for a variety of sensing applications and could reduce cost by eliminating waste.Science, this issue p. 264; see also p. 228High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aaw2781</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.264-268 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2211946296 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Charge materials Crystal growth Crystals Ferroelectric crystals Ferroelectric materials Ferroelectricity First principles Heterogeneity Lead Lead titanates Mathematical analysis Piezoelectricity Properties (attributes) Rare earth elements Relaxors Samarium Scanning electron microscopy Scanning transmission electron microscopy Single crystals Transducers Transmission electron microscopy |
title | Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20piezoelectricity%20of%20Sm-doped%20Pb(Mg1/3Nb2/3)O3-PbTiO3%20single%20crystals&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Li,%20Fei&rft.date=2019-04-19&rft.volume=364&rft.issue=6437&rft.spage=264&rft.epage=268&rft.pages=264-268&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaw2781&rft_dat=%3Cproquest%3E2211946296%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-daa660ffaef2021a9ce414edf0c8b2f8a4462d6cad6763d6fbd643dd2a0140e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211360284&rft_id=info:pmid/&rfr_iscdi=true |