Loading…

Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies

. Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, w...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2019-04, Vol.42 (4), p.50-20, Article 50
Main Authors: Mubeena, Shaikh, Chatterji, Apratim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43
cites cdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43
container_end_page 20
container_issue 4
container_start_page 50
container_title The European physical journal. E, Soft matter and biological physics
container_volume 42
creator Mubeena, Shaikh
Chatterji, Apratim
description . Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained. Graphical abstract
doi_str_mv 10.1140/epje/i2019-11811-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2213151524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213151524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EoqXlBVggS2y6CfW187tEFaVIldiA1F3kONczHpw4-CZU8zp90jozpUgsWNnyPd-xrY-xdyA-AuTiEqcdXjopoMkAaoBMvmCnIBuZ1U1x9_J5n8MJe0O0E0KkmHrNThQIgEaVp-zhxmHU0Wyd0Z7rsee0HzFuHM3OcEJvM02EQ-f33I3chGEK5GYkHiwfQo-e34c4ePcT-eAMeq9jNgW_HzDSwTfqMUw6Jp1PqYi0-JlW1zqgOS5mXtIpv3fzlvfud8olVYjTNviwcUjn7JXVnvDt03rGflx__n51k91--_L16tNtZlRVzBmIstbG6A5F3ncFFFiUfdkhgqpQFbVFWesKZGlt3pdgVQVYadOUsgFd2VydsYujd4rh14I0t4Ojw49GDAu1UoKC5JUr-uEfdBeWOKbXrZSsykoomSh5pEwMRBFtO0U36LhvQbRrg-3aYHtosD002K6h90_qpRuwf478qSwB6ghQGo0bjH_v_o_2EVpTrfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212767032</pqid></control><display><type>article</type><title>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</title><source>Springer Link</source><creator>Mubeena, Shaikh ; Chatterji, Apratim</creator><creatorcontrib>Mubeena, Shaikh ; Chatterji, Apratim</creatorcontrib><description>. Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2019-11811-2</identifier><identifier>PMID: 31011936</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Biological and Medical Physics ; Biophysics ; Chains (polymeric) ; Clusters ; Complex Fluids and Microfluidics ; Complex Systems ; Computer architecture ; Computer simulation ; Condensed matter physics ; Density ; Equilibrium ; Mathematical models ; Micelles ; Morphology ; Nanoparticles ; Nanostructure ; Nanotechnology ; Parameters ; Percolation ; Physics ; Physics and Astronomy ; Polymer matrix composites ; Polymer Sciences ; Polymers ; Pore size ; Porosity ; Regular Article ; Self-assembly ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2019-04, Vol.42 (4), p.50-20, Article 50</ispartof><rights>EDP Sciences, SocietĂ  Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</citedby><cites>FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31011936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mubeena, Shaikh</creatorcontrib><creatorcontrib>Chatterji, Apratim</creatorcontrib><title>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>. Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained. Graphical abstract</description><subject>Anisotropy</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chains (polymeric)</subject><subject>Clusters</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Density</subject><subject>Equilibrium</subject><subject>Mathematical models</subject><subject>Micelles</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Parameters</subject><subject>Percolation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Regular Article</subject><subject>Self-assembly</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EoqXlBVggS2y6CfW187tEFaVIldiA1F3kONczHpw4-CZU8zp90jozpUgsWNnyPd-xrY-xdyA-AuTiEqcdXjopoMkAaoBMvmCnIBuZ1U1x9_J5n8MJe0O0E0KkmHrNThQIgEaVp-zhxmHU0Wyd0Z7rsee0HzFuHM3OcEJvM02EQ-f33I3chGEK5GYkHiwfQo-e34c4ePcT-eAMeq9jNgW_HzDSwTfqMUw6Jp1PqYi0-JlW1zqgOS5mXtIpv3fzlvfud8olVYjTNviwcUjn7JXVnvDt03rGflx__n51k91--_L16tNtZlRVzBmIstbG6A5F3ncFFFiUfdkhgqpQFbVFWesKZGlt3pdgVQVYadOUsgFd2VydsYujd4rh14I0t4Ojw49GDAu1UoKC5JUr-uEfdBeWOKbXrZSsykoomSh5pEwMRBFtO0U36LhvQbRrg-3aYHtosD002K6h90_qpRuwf478qSwB6ghQGo0bjH_v_o_2EVpTrfA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Mubeena, Shaikh</creator><creator>Chatterji, Apratim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190401</creationdate><title>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</title><author>Mubeena, Shaikh ; Chatterji, Apratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chains (polymeric)</topic><topic>Clusters</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Density</topic><topic>Equilibrium</topic><topic>Mathematical models</topic><topic>Micelles</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Parameters</topic><topic>Percolation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Regular Article</topic><topic>Self-assembly</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mubeena, Shaikh</creatorcontrib><creatorcontrib>Chatterji, Apratim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mubeena, Shaikh</au><au>Chatterji, Apratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>42</volume><issue>4</issue><spage>50</spage><epage>20</epage><pages>50-20</pages><artnum>50</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>. Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31011936</pmid><doi>10.1140/epje/i2019-11811-2</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2019-04, Vol.42 (4), p.50-20, Article 50
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_2213151524
source Springer Link
subjects Anisotropy
Biological and Medical Physics
Biophysics
Chains (polymeric)
Clusters
Complex Fluids and Microfluidics
Complex Systems
Computer architecture
Computer simulation
Condensed matter physics
Density
Equilibrium
Mathematical models
Micelles
Morphology
Nanoparticles
Nanostructure
Nanotechnology
Parameters
Percolation
Physics
Physics and Astronomy
Polymer matrix composites
Polymer Sciences
Polymers
Pore size
Porosity
Regular Article
Self-assembly
Soft and Granular Matter
Surfaces and Interfaces
Thin Films
title Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20and%20synergistic%20self-assembly%20in%20composites%20of%20model%20wormlike%20micellar-polymers%20and%20nanoparticles%20results%20in%20nanostructures%20with%20diverse%20morphologies&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Mubeena,%20Shaikh&rft.date=2019-04-01&rft.volume=42&rft.issue=4&rft.spage=50&rft.epage=20&rft.pages=50-20&rft.artnum=50&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2019-11811-2&rft_dat=%3Cproquest_cross%3E2213151524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212767032&rft_id=info:pmid/31011936&rfr_iscdi=true