Loading…
Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies
. Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, w...
Saved in:
Published in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2019-04, Vol.42 (4), p.50-20, Article 50 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43 |
container_end_page | 20 |
container_issue | 4 |
container_start_page | 50 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 42 |
creator | Mubeena, Shaikh Chatterji, Apratim |
description | .
Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2019-11811-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2213151524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213151524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EoqXlBVggS2y6CfW187tEFaVIldiA1F3kONczHpw4-CZU8zp90jozpUgsWNnyPd-xrY-xdyA-AuTiEqcdXjopoMkAaoBMvmCnIBuZ1U1x9_J5n8MJe0O0E0KkmHrNThQIgEaVp-zhxmHU0Wyd0Z7rsee0HzFuHM3OcEJvM02EQ-f33I3chGEK5GYkHiwfQo-e34c4ePcT-eAMeq9jNgW_HzDSwTfqMUw6Jp1PqYi0-JlW1zqgOS5mXtIpv3fzlvfud8olVYjTNviwcUjn7JXVnvDt03rGflx__n51k91--_L16tNtZlRVzBmIstbG6A5F3ncFFFiUfdkhgqpQFbVFWesKZGlt3pdgVQVYadOUsgFd2VydsYujd4rh14I0t4Ojw49GDAu1UoKC5JUr-uEfdBeWOKbXrZSsykoomSh5pEwMRBFtO0U36LhvQbRrg-3aYHtosD002K6h90_qpRuwf478qSwB6ghQGo0bjH_v_o_2EVpTrfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212767032</pqid></control><display><type>article</type><title>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</title><source>Springer Link</source><creator>Mubeena, Shaikh ; Chatterji, Apratim</creator><creatorcontrib>Mubeena, Shaikh ; Chatterji, Apratim</creatorcontrib><description>.
Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2019-11811-2</identifier><identifier>PMID: 31011936</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Biological and Medical Physics ; Biophysics ; Chains (polymeric) ; Clusters ; Complex Fluids and Microfluidics ; Complex Systems ; Computer architecture ; Computer simulation ; Condensed matter physics ; Density ; Equilibrium ; Mathematical models ; Micelles ; Morphology ; Nanoparticles ; Nanostructure ; Nanotechnology ; Parameters ; Percolation ; Physics ; Physics and Astronomy ; Polymer matrix composites ; Polymer Sciences ; Polymers ; Pore size ; Porosity ; Regular Article ; Self-assembly ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2019-04, Vol.42 (4), p.50-20, Article 50</ispartof><rights>EDP Sciences, SocietĂ Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</citedby><cites>FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31011936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mubeena, Shaikh</creatorcontrib><creatorcontrib>Chatterji, Apratim</creatorcontrib><title>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>.
Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained.
Graphical abstract</description><subject>Anisotropy</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chains (polymeric)</subject><subject>Clusters</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Density</subject><subject>Equilibrium</subject><subject>Mathematical models</subject><subject>Micelles</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Parameters</subject><subject>Percolation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Regular Article</subject><subject>Self-assembly</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EoqXlBVggS2y6CfW187tEFaVIldiA1F3kONczHpw4-CZU8zp90jozpUgsWNnyPd-xrY-xdyA-AuTiEqcdXjopoMkAaoBMvmCnIBuZ1U1x9_J5n8MJe0O0E0KkmHrNThQIgEaVp-zhxmHU0Wyd0Z7rsee0HzFuHM3OcEJvM02EQ-f33I3chGEK5GYkHiwfQo-e34c4ePcT-eAMeq9jNgW_HzDSwTfqMUw6Jp1PqYi0-JlW1zqgOS5mXtIpv3fzlvfud8olVYjTNviwcUjn7JXVnvDt03rGflx__n51k91--_L16tNtZlRVzBmIstbG6A5F3ncFFFiUfdkhgqpQFbVFWesKZGlt3pdgVQVYadOUsgFd2VydsYujd4rh14I0t4Ojw49GDAu1UoKC5JUr-uEfdBeWOKbXrZSsykoomSh5pEwMRBFtO0U36LhvQbRrg-3aYHtosD002K6h90_qpRuwf478qSwB6ghQGo0bjH_v_o_2EVpTrfA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Mubeena, Shaikh</creator><creator>Chatterji, Apratim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190401</creationdate><title>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</title><author>Mubeena, Shaikh ; Chatterji, Apratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chains (polymeric)</topic><topic>Clusters</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Density</topic><topic>Equilibrium</topic><topic>Mathematical models</topic><topic>Micelles</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Parameters</topic><topic>Percolation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Regular Article</topic><topic>Self-assembly</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mubeena, Shaikh</creatorcontrib><creatorcontrib>Chatterji, Apratim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mubeena, Shaikh</au><au>Chatterji, Apratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>42</volume><issue>4</issue><spage>50</spage><epage>20</epage><pages>50-20</pages><artnum>50</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>.
Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31011936</pmid><doi>10.1140/epje/i2019-11811-2</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2019-04, Vol.42 (4), p.50-20, Article 50 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_2213151524 |
source | Springer Link |
subjects | Anisotropy Biological and Medical Physics Biophysics Chains (polymeric) Clusters Complex Fluids and Microfluidics Complex Systems Computer architecture Computer simulation Condensed matter physics Density Equilibrium Mathematical models Micelles Morphology Nanoparticles Nanostructure Nanotechnology Parameters Percolation Physics Physics and Astronomy Polymer matrix composites Polymer Sciences Polymers Pore size Porosity Regular Article Self-assembly Soft and Granular Matter Surfaces and Interfaces Thin Films |
title | Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20and%20synergistic%20self-assembly%20in%20composites%20of%20model%20wormlike%20micellar-polymers%20and%20nanoparticles%20results%20in%20nanostructures%20with%20diverse%20morphologies&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Mubeena,%20Shaikh&rft.date=2019-04-01&rft.volume=42&rft.issue=4&rft.spage=50&rft.epage=20&rft.pages=50-20&rft.artnum=50&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2019-11811-2&rft_dat=%3Cproquest_cross%3E2213151524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-1068accabe04db515e56d6bee137e358fe28a7126ff4d61f371e7ac96291a7f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212767032&rft_id=info:pmid/31011936&rfr_iscdi=true |