Loading…
Cl2 Production by Photocatalytic Oxidation of HCl over TiO2
We studied the photocatalytic aerobic oxidation of HCl over TiO2 for producing Cl2. Steady‐state Cl2 production rates were determined with a photocatalytic fixed‐bed gas‐phase reactor equipped with UV light‐emitting diodes (LEDs) using iodometric titration as online analytics. We found stable Cl2 pr...
Saved in:
Published in: | ChemSusChem 2019-06, Vol.12 (12), p.2725-2731 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We studied the photocatalytic aerobic oxidation of HCl over TiO2 for producing Cl2. Steady‐state Cl2 production rates were determined with a photocatalytic fixed‐bed gas‐phase reactor equipped with UV light‐emitting diodes (LEDs) using iodometric titration as online analytics. We found stable Cl2 production rates of up to 16 mmol h−1 m−2 for commercial anatase TiO2 Hombikat UV100. The rate increased linearly with temperature from 21 to 140 °C, indicating the acceleration of the limiting desorption rate of the coupled product water. Comparing different TiO2 polymorphs revealed that anatase possesses higher activity than rutile. The adsorption of HCl was monitored in situ by IR spectroscopy. The IR spectra indicated that HCl chemisorption chlorinates the surface of TiO2 under the reaction conditions, suggesting it to be the first step of the reaction mechanism. High stability opens up the opportunity of developing a promising photocatalytic process of HCl recycling at lower temperatures suitable for reaching full conversion.
HCl recycling: Photocatalytic Cl2 production over TiO2 was studied aiming at sustainable HCl recycling. The photocatalytic process allows lower operation temperatures than the industrially applied thermal Deacon process. The high photocatalyst stability is promising for developing an improved recycling process. |
---|---|
ISSN: | 1864-5631 1864-564X |
DOI: | 10.1002/cssc.201900642 |