Loading…

The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells

Anemarrhena asphodeloides has been widely used in traditional medicine for thousands of years; it has been reported to improve learning and memory, and to reduce inflammation. However, the role of A. asphodeloides in enhancing the immune response has remained unclear. This study aimed to evaluate th...

Full description

Saved in:
Bibliographic Details
Published in:Phytomedicine (Stuttgart) 2019-06, Vol.59, p.152789-152789, Article 152789
Main Authors: Ji, Kon-Young, Kim, Ki Mo, Kim, Yun Hee, Im, A-Rang, Lee, Joo Young, Park, Boram, Na, MinKyun, Chae, Sungwook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anemarrhena asphodeloides has been widely used in traditional medicine for thousands of years; it has been reported to improve learning and memory, and to reduce inflammation. However, the role of A. asphodeloides in enhancing the immune response has remained unclear. This study aimed to evaluate the effect of A. asphodeloides extract (AA-Ex) on enhancing the immune response in macrophages and to identify the active compounds causing these effects. To determine the enhancing immune response of AA-Ex and its active compounds, cell proliferation and cell cycle of RAW 264.7 cells were analyzed by MTS assay and flow cytometry. The gene expression of p53, p27, cyclin D2, and cyclin E2 was measured by real-time PCR. To evaluate the anti-inflammatory effects of AA-Ex and its active compounds, the production of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory cytokines was analyzed by Griess reagent, flow cytometry, and real-time PCR. The phosphorylation of p38, c-Jun N-terminal kinase, inhibitory kappa B alpha, and p65 was examined by western blot analysis. AA-Ex increased cell proliferation by extending the cell cycle S-phase; timosaponin B and timosaponin B-II affected cell proliferation and the cell cycle as active compounds of A. asphodeloides. Next, we determined that A. asphodeloides displayed anti-inflammatory effects, including the inhibition of the production of NO, ROS, and pro-inflammatory cytokines through the suppression of mitogen-activated protein kinase and nuclear factor kappa B phosphorylation downstream of the toll-like receptor 4 signaling pathway. Moreover, we identified that timosaponin B and timosaponin B-II were the active compounds for these effects. Our results suggest that A. asphodeloides promotes the immune response and has anti-inflammatory effects. Moreover, timosaponin B and B-II played important roles as the active compounds of A. asphodeloides in enhancing the immune and anti-inflammatory responses in this model. [Display omitted]
ISSN:0944-7113
1618-095X
DOI:10.1016/j.phymed.2018.12.012