Loading…

Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides

Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen ev...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem 2019-06, Vol.12 (12), p.2564-2569
Main Authors: Sun, Yixuan, Xia, Yuanyuan, Kuai, Long, Sun, Hongxia, Cao, Wei, Huttula, Marko, Honkanen, Ari‐Pekka, Viljanen, Mira, Huotari, Simo, Geng, Baoyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3
cites cdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3
container_end_page 2569
container_issue 12
container_start_page 2564
container_title ChemSusChem
container_volume 12
creator Sun, Yixuan
Xia, Yuanyuan
Kuai, Long
Sun, Hongxia
Cao, Wei
Huttula, Marko
Honkanen, Ari‐Pekka
Viljanen, Mira
Huotari, Simo
Geng, Baoyou
description Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts. Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV.
doi_str_mv 10.1002/cssc.201900831
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2213914887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265600142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMofl89yoIXL62TTZrdHGVbP0DooQrelmx2VleyG0262t76EwT_ob_ElGoFL0KYDMwz78y8hBxR6FOA-Ex7r_sxUAmQMrpBdmkqeG8g-P3mOmd0h-x5_wQgQAqxTXYYBZowzndJMcQK9fRz8T509Su20ah9VK3GBttpZKtoZELVWf2ITa2Vicaz-cOSerWmm9a2jcK7wM_FR2ZDODfRLbpWuXl0NS-dndUl-gOyVSnj8fD73yd3F6Pb7Kp3M768zs5venpABe1JymWSJEJKXmgNJStRVjrhRcKqtFJU6FJTVgCwgUIsE45QSMW0llLFcYVsn5yudJ-dfenQT_Om9hqNUS3azudxTFkYkqZJQE_-oE-2C3ubJSUGAoDyOFD9FaWd9d5hlT-7ugnH5RTypfv50v187X5oOP6W7YoGyzX-Y3cA5Ap4qw3O_5HLs8kk-xX_AijTlFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265600142</pqid></control><display><type>article</type><title>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sun, Yixuan ; Xia, Yuanyuan ; Kuai, Long ; Sun, Hongxia ; Cao, Wei ; Huttula, Marko ; Honkanen, Ari‐Pekka ; Viljanen, Mira ; Huotari, Simo ; Geng, Baoyou</creator><creatorcontrib>Sun, Yixuan ; Xia, Yuanyuan ; Kuai, Long ; Sun, Hongxia ; Cao, Wei ; Huttula, Marko ; Honkanen, Ari‐Pekka ; Viljanen, Mira ; Huotari, Simo ; Geng, Baoyou</creatorcontrib><description>Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts. Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201900831</identifier><identifier>PMID: 31017344</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Cobalt ; defect engineering ; Density functional theory ; Design defects ; doping ; electrocatalysis ; Electrocatalysts ; Energy conversion ; Energy storage ; Etching ; Hydroxides ; Iron ; Leaching ; oxygen evolution reaction ; Oxygen evolution reactions ; Porosity ; Transition metals ; Valence</subject><ispartof>ChemSusChem, 2019-06, Vol.12 (12), p.2564-2569</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</citedby><cites>FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</cites><orcidid>0000-0002-3657-0510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31017344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Xia, Yuanyuan</creatorcontrib><creatorcontrib>Kuai, Long</creatorcontrib><creatorcontrib>Sun, Hongxia</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Huttula, Marko</creatorcontrib><creatorcontrib>Honkanen, Ari‐Pekka</creatorcontrib><creatorcontrib>Viljanen, Mira</creatorcontrib><creatorcontrib>Huotari, Simo</creatorcontrib><creatorcontrib>Geng, Baoyou</creatorcontrib><title>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts. Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>defect engineering</subject><subject>Density functional theory</subject><subject>Design defects</subject><subject>doping</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Etching</subject><subject>Hydroxides</subject><subject>Iron</subject><subject>Leaching</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Porosity</subject><subject>Transition metals</subject><subject>Valence</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMofl89yoIXL62TTZrdHGVbP0DooQrelmx2VleyG0262t76EwT_ob_ElGoFL0KYDMwz78y8hBxR6FOA-Ex7r_sxUAmQMrpBdmkqeG8g-P3mOmd0h-x5_wQgQAqxTXYYBZowzndJMcQK9fRz8T509Su20ah9VK3GBttpZKtoZELVWf2ITa2Vicaz-cOSerWmm9a2jcK7wM_FR2ZDODfRLbpWuXl0NS-dndUl-gOyVSnj8fD73yd3F6Pb7Kp3M768zs5venpABe1JymWSJEJKXmgNJStRVjrhRcKqtFJU6FJTVgCwgUIsE45QSMW0llLFcYVsn5yudJ-dfenQT_Om9hqNUS3azudxTFkYkqZJQE_-oE-2C3ubJSUGAoDyOFD9FaWd9d5hlT-7ugnH5RTypfv50v187X5oOP6W7YoGyzX-Y3cA5Ap4qw3O_5HLs8kk-xX_AijTlFs</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Sun, Yixuan</creator><creator>Xia, Yuanyuan</creator><creator>Kuai, Long</creator><creator>Sun, Hongxia</creator><creator>Cao, Wei</creator><creator>Huttula, Marko</creator><creator>Honkanen, Ari‐Pekka</creator><creator>Viljanen, Mira</creator><creator>Huotari, Simo</creator><creator>Geng, Baoyou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3657-0510</orcidid></search><sort><creationdate>20190621</creationdate><title>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</title><author>Sun, Yixuan ; Xia, Yuanyuan ; Kuai, Long ; Sun, Hongxia ; Cao, Wei ; Huttula, Marko ; Honkanen, Ari‐Pekka ; Viljanen, Mira ; Huotari, Simo ; Geng, Baoyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>defect engineering</topic><topic>Density functional theory</topic><topic>Design defects</topic><topic>doping</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Etching</topic><topic>Hydroxides</topic><topic>Iron</topic><topic>Leaching</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Porosity</topic><topic>Transition metals</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Xia, Yuanyuan</creatorcontrib><creatorcontrib>Kuai, Long</creatorcontrib><creatorcontrib>Sun, Hongxia</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Huttula, Marko</creatorcontrib><creatorcontrib>Honkanen, Ari‐Pekka</creatorcontrib><creatorcontrib>Viljanen, Mira</creatorcontrib><creatorcontrib>Huotari, Simo</creatorcontrib><creatorcontrib>Geng, Baoyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yixuan</au><au>Xia, Yuanyuan</au><au>Kuai, Long</au><au>Sun, Hongxia</au><au>Cao, Wei</au><au>Huttula, Marko</au><au>Honkanen, Ari‐Pekka</au><au>Viljanen, Mira</au><au>Huotari, Simo</au><au>Geng, Baoyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>12</volume><issue>12</issue><spage>2564</spage><epage>2569</epage><pages>2564-2569</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts. Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31017344</pmid><doi>10.1002/cssc.201900831</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3657-0510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2019-06, Vol.12 (12), p.2564-2569
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2213914887
source Wiley-Blackwell Read & Publish Collection
subjects Catalysis
Catalysts
Cobalt
defect engineering
Density functional theory
Design defects
doping
electrocatalysis
Electrocatalysts
Energy conversion
Energy storage
Etching
Hydroxides
Iron
Leaching
oxygen evolution reaction
Oxygen evolution reactions
Porosity
Transition metals
Valence
title Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%E2%80%90Driven%20Enhancement%20of%20Electrochemical%20Oxygen%20Evolution%20on%20Fe%E2%80%93Co%E2%80%93Al%20Ternary%20Hydroxides&rft.jtitle=ChemSusChem&rft.au=Sun,%20Yixuan&rft.date=2019-06-21&rft.volume=12&rft.issue=12&rft.spage=2564&rft.epage=2569&rft.pages=2564-2569&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201900831&rft_dat=%3Cproquest_cross%3E2265600142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265600142&rft_id=info:pmid/31017344&rfr_iscdi=true