Loading…
Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides
Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen ev...
Saved in:
Published in: | ChemSusChem 2019-06, Vol.12 (12), p.2564-2569 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3 |
container_end_page | 2569 |
container_issue | 12 |
container_start_page | 2564 |
container_title | ChemSusChem |
container_volume | 12 |
creator | Sun, Yixuan Xia, Yuanyuan Kuai, Long Sun, Hongxia Cao, Wei Huttula, Marko Honkanen, Ari‐Pekka Viljanen, Mira Huotari, Simo Geng, Baoyou |
description | Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts.
Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV. |
doi_str_mv | 10.1002/cssc.201900831 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2213914887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265600142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMofl89yoIXL62TTZrdHGVbP0DooQrelmx2VleyG0262t76EwT_ob_ElGoFL0KYDMwz78y8hBxR6FOA-Ex7r_sxUAmQMrpBdmkqeG8g-P3mOmd0h-x5_wQgQAqxTXYYBZowzndJMcQK9fRz8T509Su20ah9VK3GBttpZKtoZELVWf2ITa2Vicaz-cOSerWmm9a2jcK7wM_FR2ZDODfRLbpWuXl0NS-dndUl-gOyVSnj8fD73yd3F6Pb7Kp3M768zs5venpABe1JymWSJEJKXmgNJStRVjrhRcKqtFJU6FJTVgCwgUIsE45QSMW0llLFcYVsn5yudJ-dfenQT_Om9hqNUS3azudxTFkYkqZJQE_-oE-2C3ubJSUGAoDyOFD9FaWd9d5hlT-7ugnH5RTypfv50v187X5oOP6W7YoGyzX-Y3cA5Ap4qw3O_5HLs8kk-xX_AijTlFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265600142</pqid></control><display><type>article</type><title>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sun, Yixuan ; Xia, Yuanyuan ; Kuai, Long ; Sun, Hongxia ; Cao, Wei ; Huttula, Marko ; Honkanen, Ari‐Pekka ; Viljanen, Mira ; Huotari, Simo ; Geng, Baoyou</creator><creatorcontrib>Sun, Yixuan ; Xia, Yuanyuan ; Kuai, Long ; Sun, Hongxia ; Cao, Wei ; Huttula, Marko ; Honkanen, Ari‐Pekka ; Viljanen, Mira ; Huotari, Simo ; Geng, Baoyou</creatorcontrib><description>Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts.
Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201900831</identifier><identifier>PMID: 31017344</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Cobalt ; defect engineering ; Density functional theory ; Design defects ; doping ; electrocatalysis ; Electrocatalysts ; Energy conversion ; Energy storage ; Etching ; Hydroxides ; Iron ; Leaching ; oxygen evolution reaction ; Oxygen evolution reactions ; Porosity ; Transition metals ; Valence</subject><ispartof>ChemSusChem, 2019-06, Vol.12 (12), p.2564-2569</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</citedby><cites>FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</cites><orcidid>0000-0002-3657-0510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31017344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Xia, Yuanyuan</creatorcontrib><creatorcontrib>Kuai, Long</creatorcontrib><creatorcontrib>Sun, Hongxia</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Huttula, Marko</creatorcontrib><creatorcontrib>Honkanen, Ari‐Pekka</creatorcontrib><creatorcontrib>Viljanen, Mira</creatorcontrib><creatorcontrib>Huotari, Simo</creatorcontrib><creatorcontrib>Geng, Baoyou</creatorcontrib><title>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts.
Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>defect engineering</subject><subject>Density functional theory</subject><subject>Design defects</subject><subject>doping</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Etching</subject><subject>Hydroxides</subject><subject>Iron</subject><subject>Leaching</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Porosity</subject><subject>Transition metals</subject><subject>Valence</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMofl89yoIXL62TTZrdHGVbP0DooQrelmx2VleyG0262t76EwT_ob_ElGoFL0KYDMwz78y8hBxR6FOA-Ex7r_sxUAmQMrpBdmkqeG8g-P3mOmd0h-x5_wQgQAqxTXYYBZowzndJMcQK9fRz8T509Su20ah9VK3GBttpZKtoZELVWf2ITa2Vicaz-cOSerWmm9a2jcK7wM_FR2ZDODfRLbpWuXl0NS-dndUl-gOyVSnj8fD73yd3F6Pb7Kp3M768zs5venpABe1JymWSJEJKXmgNJStRVjrhRcKqtFJU6FJTVgCwgUIsE45QSMW0llLFcYVsn5yudJ-dfenQT_Om9hqNUS3azudxTFkYkqZJQE_-oE-2C3ubJSUGAoDyOFD9FaWd9d5hlT-7ugnH5RTypfv50v187X5oOP6W7YoGyzX-Y3cA5Ap4qw3O_5HLs8kk-xX_AijTlFs</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Sun, Yixuan</creator><creator>Xia, Yuanyuan</creator><creator>Kuai, Long</creator><creator>Sun, Hongxia</creator><creator>Cao, Wei</creator><creator>Huttula, Marko</creator><creator>Honkanen, Ari‐Pekka</creator><creator>Viljanen, Mira</creator><creator>Huotari, Simo</creator><creator>Geng, Baoyou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3657-0510</orcidid></search><sort><creationdate>20190621</creationdate><title>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</title><author>Sun, Yixuan ; Xia, Yuanyuan ; Kuai, Long ; Sun, Hongxia ; Cao, Wei ; Huttula, Marko ; Honkanen, Ari‐Pekka ; Viljanen, Mira ; Huotari, Simo ; Geng, Baoyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>defect engineering</topic><topic>Density functional theory</topic><topic>Design defects</topic><topic>doping</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Etching</topic><topic>Hydroxides</topic><topic>Iron</topic><topic>Leaching</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Porosity</topic><topic>Transition metals</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Xia, Yuanyuan</creatorcontrib><creatorcontrib>Kuai, Long</creatorcontrib><creatorcontrib>Sun, Hongxia</creatorcontrib><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Huttula, Marko</creatorcontrib><creatorcontrib>Honkanen, Ari‐Pekka</creatorcontrib><creatorcontrib>Viljanen, Mira</creatorcontrib><creatorcontrib>Huotari, Simo</creatorcontrib><creatorcontrib>Geng, Baoyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yixuan</au><au>Xia, Yuanyuan</au><au>Kuai, Long</au><au>Sun, Hongxia</au><au>Cao, Wei</au><au>Huttula, Marko</au><au>Honkanen, Ari‐Pekka</au><au>Viljanen, Mira</au><au>Huotari, Simo</au><au>Geng, Baoyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>12</volume><issue>12</issue><spage>2564</spage><epage>2569</epage><pages>2564-2569</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Efficient, abundant and low‐cost catalysts for the oxygen evolution reaction (OER) are required for energy conversion and storage. In this study, a doping–etching route has been developed to access defect rich Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution. After partial etching of Al, ultrathin Fe3Co2Al2‐AE electrocatalysts with a rich pore structure are obtained with a shift of the cobalt valence state towards higher valence (Co2+→Co3+), along with a substantial improvement in the catalytic performance. Fe3Co2Al2‐AE shows a notably lower overpotential of only 284 mV at a current density of 10 mA cm−2 and double the OER mass activity of the etching‐free Fe3Co2Al2 with an overpotential of 350 mV. Density functional theory shows the leaching of Al changes the rate‐determining step of the OER from conversion of *OOH into O2 on Fe3Co2Al2 to formation of OOH from *O on the Al‐defective catalysts. This work demonstrates an effective route to design and synthesize transition metal electrocatalysts and provides a promising alternative for the further development of oxygen evolution catalysts.
Living on the etch: A doping–etching route has been developed to access defect‐rich ultrathin Fe–Co–Al (Fe–Co–Al‐AE) ternary hydroxide nanosheets for superior electrochemical oxygen evolution reaction (OER). The Al defects of Fe3Co2Al2‐AE boost the cobalt valence state to higher valence and leads to a significant improvement in catalytic performance. Fe3Co2Al2‐AE shows a double the OER mass activity of defect‐free Fe3Co2Al2 under an overpotential of 350 mV.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31017344</pmid><doi>10.1002/cssc.201900831</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3657-0510</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2019-06, Vol.12 (12), p.2564-2569 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2213914887 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Catalysis Catalysts Cobalt defect engineering Density functional theory Design defects doping electrocatalysis Electrocatalysts Energy conversion Energy storage Etching Hydroxides Iron Leaching oxygen evolution reaction Oxygen evolution reactions Porosity Transition metals Valence |
title | Defect‐Driven Enhancement of Electrochemical Oxygen Evolution on Fe–Co–Al Ternary Hydroxides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%E2%80%90Driven%20Enhancement%20of%20Electrochemical%20Oxygen%20Evolution%20on%20Fe%E2%80%93Co%E2%80%93Al%20Ternary%20Hydroxides&rft.jtitle=ChemSusChem&rft.au=Sun,%20Yixuan&rft.date=2019-06-21&rft.volume=12&rft.issue=12&rft.spage=2564&rft.epage=2569&rft.pages=2564-2569&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201900831&rft_dat=%3Cproquest_cross%3E2265600142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5161-91497776994bcc0d3de9fc74b73f8fa16cdc13b0035aeed74e0b9a3cc99a22fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265600142&rft_id=info:pmid/31017344&rfr_iscdi=true |