Loading…
In silico strategies to couple production of bioethanol with growth in cyanobacteria
Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study t...
Saved in:
Published in: | Biotechnology and bioengineering 2019-08, Vol.116 (8), p.2061-2073 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3 |
container_end_page | 2073 |
container_issue | 8 |
container_start_page | 2061 |
container_title | Biotechnology and bioengineering |
container_volume | 116 |
creator | Lasry Testa, Romina Delpino, Claudio Estrada, Vanina Diaz, Soledad M. |
description | Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW
−1·h
−1.
Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels. |
doi_str_mv | 10.1002/bit.26998 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2217482625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265597639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</originalsourceid><addsrcrecordid>eNp10E1rGzEQBmARWmIn7aF_oAh6SQ5rz0oraXVsQ5IaArm450WrD0dmvXIlLcb_vkrt9hDIaZjh4WV4EfpSw6IGIMve5wXhUrYXaF6DFBUQCR_QHAB4RZkkM3SV0rasouX8Es1oDbRhLZ2j9WrEyQ9eB5xyVNluvE04B6zDtB8s3sdgJp19GHFwuPfB5hc1hgEffH7BmxgOZfgR62O59kpnG736hD46NST7-Tyv0a-H-_Xdz-rp-XF19_2p0lRCWzWm5xSU4uB6TQRRbUOMYY3gvSNgjHPl5AwTFHgjDQepnZPMMq1FL7im1-jmlFu-_D3ZlLudT9oOgxptmFJHSC2alnDCCv32hm7DFMfyXVGcMSk4lUXdnpSOIaVoXbePfqfisauhe626K1V3f6su9us5cep31vyX_7otYHkCBz_Y4_tJ3Y_V-hT5B4cbiJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265597639</pqid></control><display><type>article</type><title>In silico strategies to couple production of bioethanol with growth in cyanobacteria</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lasry Testa, Romina ; Delpino, Claudio ; Estrada, Vanina ; Diaz, Soledad M.</creator><creatorcontrib>Lasry Testa, Romina ; Delpino, Claudio ; Estrada, Vanina ; Diaz, Soledad M.</creatorcontrib><description>Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW
−1·h
−1.
Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26998</identifier><identifier>PMID: 31034583</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>bilevel programming ; bioethanol ; Biofuels ; Carbon dioxide ; coupled mutant ; Coupling ; Cyanobacteria ; Ethanol ; Ethanol - metabolism ; Gene Knockout Techniques ; Genomes ; genome‐scale metabolic model ; Industrial Microbiology ; Metabolic networks ; Metabolic Networks and Pathways ; Microorganisms, Genetically-Modified ; Mixed integer ; Models, Biological ; Mutants ; Nutrients ; Raw materials ; strain design ; Synechocystis - genetics ; Synechocystis - metabolism</subject><ispartof>Biotechnology and bioengineering, 2019-08, Vol.116 (8), p.2061-2073</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</citedby><cites>FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</cites><orcidid>0000-0002-1636-383X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31034583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lasry Testa, Romina</creatorcontrib><creatorcontrib>Delpino, Claudio</creatorcontrib><creatorcontrib>Estrada, Vanina</creatorcontrib><creatorcontrib>Diaz, Soledad M.</creatorcontrib><title>In silico strategies to couple production of bioethanol with growth in cyanobacteria</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW
−1·h
−1.
Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels.</description><subject>bilevel programming</subject><subject>bioethanol</subject><subject>Biofuels</subject><subject>Carbon dioxide</subject><subject>coupled mutant</subject><subject>Coupling</subject><subject>Cyanobacteria</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Genomes</subject><subject>genome‐scale metabolic model</subject><subject>Industrial Microbiology</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways</subject><subject>Microorganisms, Genetically-Modified</subject><subject>Mixed integer</subject><subject>Models, Biological</subject><subject>Mutants</subject><subject>Nutrients</subject><subject>Raw materials</subject><subject>strain design</subject><subject>Synechocystis - genetics</subject><subject>Synechocystis - metabolism</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10E1rGzEQBmARWmIn7aF_oAh6SQ5rz0oraXVsQ5IaArm450WrD0dmvXIlLcb_vkrt9hDIaZjh4WV4EfpSw6IGIMve5wXhUrYXaF6DFBUQCR_QHAB4RZkkM3SV0rasouX8Es1oDbRhLZ2j9WrEyQ9eB5xyVNluvE04B6zDtB8s3sdgJp19GHFwuPfB5hc1hgEffH7BmxgOZfgR62O59kpnG736hD46NST7-Tyv0a-H-_Xdz-rp-XF19_2p0lRCWzWm5xSU4uB6TQRRbUOMYY3gvSNgjHPl5AwTFHgjDQepnZPMMq1FL7im1-jmlFu-_D3ZlLudT9oOgxptmFJHSC2alnDCCv32hm7DFMfyXVGcMSk4lUXdnpSOIaVoXbePfqfisauhe626K1V3f6su9us5cep31vyX_7otYHkCBz_Y4_tJ3Y_V-hT5B4cbiJo</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Lasry Testa, Romina</creator><creator>Delpino, Claudio</creator><creator>Estrada, Vanina</creator><creator>Diaz, Soledad M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1636-383X</orcidid></search><sort><creationdate>201908</creationdate><title>In silico strategies to couple production of bioethanol with growth in cyanobacteria</title><author>Lasry Testa, Romina ; Delpino, Claudio ; Estrada, Vanina ; Diaz, Soledad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bilevel programming</topic><topic>bioethanol</topic><topic>Biofuels</topic><topic>Carbon dioxide</topic><topic>coupled mutant</topic><topic>Coupling</topic><topic>Cyanobacteria</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Genomes</topic><topic>genome‐scale metabolic model</topic><topic>Industrial Microbiology</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways</topic><topic>Microorganisms, Genetically-Modified</topic><topic>Mixed integer</topic><topic>Models, Biological</topic><topic>Mutants</topic><topic>Nutrients</topic><topic>Raw materials</topic><topic>strain design</topic><topic>Synechocystis - genetics</topic><topic>Synechocystis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasry Testa, Romina</creatorcontrib><creatorcontrib>Delpino, Claudio</creatorcontrib><creatorcontrib>Estrada, Vanina</creatorcontrib><creatorcontrib>Diaz, Soledad M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasry Testa, Romina</au><au>Delpino, Claudio</au><au>Estrada, Vanina</au><au>Diaz, Soledad M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico strategies to couple production of bioethanol with growth in cyanobacteria</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2019-08</date><risdate>2019</risdate><volume>116</volume><issue>8</issue><spage>2061</spage><epage>2073</epage><pages>2061-2073</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW
−1·h
−1.
Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31034583</pmid><doi>10.1002/bit.26998</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1636-383X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2019-08, Vol.116 (8), p.2061-2073 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2217482625 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | bilevel programming bioethanol Biofuels Carbon dioxide coupled mutant Coupling Cyanobacteria Ethanol Ethanol - metabolism Gene Knockout Techniques Genomes genome‐scale metabolic model Industrial Microbiology Metabolic networks Metabolic Networks and Pathways Microorganisms, Genetically-Modified Mixed integer Models, Biological Mutants Nutrients Raw materials strain design Synechocystis - genetics Synechocystis - metabolism |
title | In silico strategies to couple production of bioethanol with growth in cyanobacteria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20strategies%20to%20couple%20production%20of%20bioethanol%20with%20growth%20in%20cyanobacteria&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Lasry%20Testa,%20Romina&rft.date=2019-08&rft.volume=116&rft.issue=8&rft.spage=2061&rft.epage=2073&rft.pages=2061-2073&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26998&rft_dat=%3Cproquest_cross%3E2265597639%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265597639&rft_id=info:pmid/31034583&rfr_iscdi=true |