Loading…

In silico strategies to couple production of bioethanol with growth in cyanobacteria

Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study t...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2019-08, Vol.116 (8), p.2061-2073
Main Authors: Lasry Testa, Romina, Delpino, Claudio, Estrada, Vanina, Diaz, Soledad M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3
cites cdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3
container_end_page 2073
container_issue 8
container_start_page 2061
container_title Biotechnology and bioengineering
container_volume 116
creator Lasry Testa, Romina
Delpino, Claudio
Estrada, Vanina
Diaz, Soledad M.
description Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW −1·h −1. Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels.
doi_str_mv 10.1002/bit.26998
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2217482625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2265597639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</originalsourceid><addsrcrecordid>eNp10E1rGzEQBmARWmIn7aF_oAh6SQ5rz0oraXVsQ5IaArm450WrD0dmvXIlLcb_vkrt9hDIaZjh4WV4EfpSw6IGIMve5wXhUrYXaF6DFBUQCR_QHAB4RZkkM3SV0rasouX8Es1oDbRhLZ2j9WrEyQ9eB5xyVNluvE04B6zDtB8s3sdgJp19GHFwuPfB5hc1hgEffH7BmxgOZfgR62O59kpnG736hD46NST7-Tyv0a-H-_Xdz-rp-XF19_2p0lRCWzWm5xSU4uB6TQRRbUOMYY3gvSNgjHPl5AwTFHgjDQepnZPMMq1FL7im1-jmlFu-_D3ZlLudT9oOgxptmFJHSC2alnDCCv32hm7DFMfyXVGcMSk4lUXdnpSOIaVoXbePfqfisauhe626K1V3f6su9us5cep31vyX_7otYHkCBz_Y4_tJ3Y_V-hT5B4cbiJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265597639</pqid></control><display><type>article</type><title>In silico strategies to couple production of bioethanol with growth in cyanobacteria</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lasry Testa, Romina ; Delpino, Claudio ; Estrada, Vanina ; Diaz, Soledad M.</creator><creatorcontrib>Lasry Testa, Romina ; Delpino, Claudio ; Estrada, Vanina ; Diaz, Soledad M.</creatorcontrib><description>Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW −1·h −1. Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26998</identifier><identifier>PMID: 31034583</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>bilevel programming ; bioethanol ; Biofuels ; Carbon dioxide ; coupled mutant ; Coupling ; Cyanobacteria ; Ethanol ; Ethanol - metabolism ; Gene Knockout Techniques ; Genomes ; genome‐scale metabolic model ; Industrial Microbiology ; Metabolic networks ; Metabolic Networks and Pathways ; Microorganisms, Genetically-Modified ; Mixed integer ; Models, Biological ; Mutants ; Nutrients ; Raw materials ; strain design ; Synechocystis - genetics ; Synechocystis - metabolism</subject><ispartof>Biotechnology and bioengineering, 2019-08, Vol.116 (8), p.2061-2073</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</citedby><cites>FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</cites><orcidid>0000-0002-1636-383X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31034583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lasry Testa, Romina</creatorcontrib><creatorcontrib>Delpino, Claudio</creatorcontrib><creatorcontrib>Estrada, Vanina</creatorcontrib><creatorcontrib>Diaz, Soledad M.</creatorcontrib><title>In silico strategies to couple production of bioethanol with growth in cyanobacteria</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW −1·h −1. Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels.</description><subject>bilevel programming</subject><subject>bioethanol</subject><subject>Biofuels</subject><subject>Carbon dioxide</subject><subject>coupled mutant</subject><subject>Coupling</subject><subject>Cyanobacteria</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Gene Knockout Techniques</subject><subject>Genomes</subject><subject>genome‐scale metabolic model</subject><subject>Industrial Microbiology</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways</subject><subject>Microorganisms, Genetically-Modified</subject><subject>Mixed integer</subject><subject>Models, Biological</subject><subject>Mutants</subject><subject>Nutrients</subject><subject>Raw materials</subject><subject>strain design</subject><subject>Synechocystis - genetics</subject><subject>Synechocystis - metabolism</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10E1rGzEQBmARWmIn7aF_oAh6SQ5rz0oraXVsQ5IaArm450WrD0dmvXIlLcb_vkrt9hDIaZjh4WV4EfpSw6IGIMve5wXhUrYXaF6DFBUQCR_QHAB4RZkkM3SV0rasouX8Es1oDbRhLZ2j9WrEyQ9eB5xyVNluvE04B6zDtB8s3sdgJp19GHFwuPfB5hc1hgEffH7BmxgOZfgR62O59kpnG736hD46NST7-Tyv0a-H-_Xdz-rp-XF19_2p0lRCWzWm5xSU4uB6TQRRbUOMYY3gvSNgjHPl5AwTFHgjDQepnZPMMq1FL7im1-jmlFu-_D3ZlLudT9oOgxptmFJHSC2alnDCCv32hm7DFMfyXVGcMSk4lUXdnpSOIaVoXbePfqfisauhe626K1V3f6su9us5cep31vyX_7otYHkCBz_Y4_tJ3Y_V-hT5B4cbiJo</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Lasry Testa, Romina</creator><creator>Delpino, Claudio</creator><creator>Estrada, Vanina</creator><creator>Diaz, Soledad M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1636-383X</orcidid></search><sort><creationdate>201908</creationdate><title>In silico strategies to couple production of bioethanol with growth in cyanobacteria</title><author>Lasry Testa, Romina ; Delpino, Claudio ; Estrada, Vanina ; Diaz, Soledad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bilevel programming</topic><topic>bioethanol</topic><topic>Biofuels</topic><topic>Carbon dioxide</topic><topic>coupled mutant</topic><topic>Coupling</topic><topic>Cyanobacteria</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Gene Knockout Techniques</topic><topic>Genomes</topic><topic>genome‐scale metabolic model</topic><topic>Industrial Microbiology</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways</topic><topic>Microorganisms, Genetically-Modified</topic><topic>Mixed integer</topic><topic>Models, Biological</topic><topic>Mutants</topic><topic>Nutrients</topic><topic>Raw materials</topic><topic>strain design</topic><topic>Synechocystis - genetics</topic><topic>Synechocystis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasry Testa, Romina</creatorcontrib><creatorcontrib>Delpino, Claudio</creatorcontrib><creatorcontrib>Estrada, Vanina</creatorcontrib><creatorcontrib>Diaz, Soledad M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasry Testa, Romina</au><au>Delpino, Claudio</au><au>Estrada, Vanina</au><au>Diaz, Soledad M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico strategies to couple production of bioethanol with growth in cyanobacteria</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2019-08</date><risdate>2019</risdate><volume>116</volume><issue>8</issue><spage>2061</spage><epage>2073</epage><pages>2061-2073</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Cyanobacteria have been considered as promising candidates for sustainable bioproduction from inexpensive raw materials, as they grow on light, carbon dioxide, and minimal inorganic nutrients. In this study, we present a genome‐scale metabolic network model for Synechocystis sp. PCC 6803 and study the optimal design of the strain for ethanol production by using a mixed integer linear problem reformulation of a bilevel programming problem that identifies gene knockouts which lead to coupling between growth and product synthesis. Five mutants were found, where the in silico model predicts coupling between biomass growth and ethanol production in photoautotrophic conditions. The best mutant gives an in silico ethanol production of 1.054 mmol·gDW −1·h −1. Rational design of growth‐coupled ethanol producing strains of the cyanobacteria Synechocystis sp. PCC 6803 was performed in silico by applying bilevel optimization techniques to a genome‐ scale metabolic network model. Solutions that couple ethanol production to growth were identified and evaluated with MOMA and in a bioreactor model, with positive results that encourage the in vivo implementation of the coupled mutants for photoautotrophic production of fourth generation biofuels.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31034583</pmid><doi>10.1002/bit.26998</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1636-383X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2019-08, Vol.116 (8), p.2061-2073
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2217482625
source Wiley-Blackwell Read & Publish Collection
subjects bilevel programming
bioethanol
Biofuels
Carbon dioxide
coupled mutant
Coupling
Cyanobacteria
Ethanol
Ethanol - metabolism
Gene Knockout Techniques
Genomes
genome‐scale metabolic model
Industrial Microbiology
Metabolic networks
Metabolic Networks and Pathways
Microorganisms, Genetically-Modified
Mixed integer
Models, Biological
Mutants
Nutrients
Raw materials
strain design
Synechocystis - genetics
Synechocystis - metabolism
title In silico strategies to couple production of bioethanol with growth in cyanobacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20strategies%20to%20couple%20production%20of%20bioethanol%20with%20growth%20in%20cyanobacteria&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Lasry%20Testa,%20Romina&rft.date=2019-08&rft.volume=116&rft.issue=8&rft.spage=2061&rft.epage=2073&rft.pages=2061-2073&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26998&rft_dat=%3Cproquest_cross%3E2265597639%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3908-4db630aa60fbc272a842dd5476bf20ddff2a8fd5730649d609cff95e5cc7b76c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265597639&rft_id=info:pmid/31034583&rfr_iscdi=true