Loading…

High-level production of N-terminal pro-brain natriuretic peptide, as a calibrant of heart failure diagnosis, in Escherichia coli

Heart failure (HF) is a coronary disease that affects people worldwide and has a high mortality rate. N-terminal pro-brain natriuretic peptide (NT-proBNP) has been proven to be a useful and accurate biomarker for diagnosing systolic HF. Here, we report a strategy for the high-level production of rec...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2019-06, Vol.103 (12), p.4779-4788
Main Authors: Kim, Young Su, Karisa, Nadia, Jeon, Woo Young, Lee, Hongweon, Kim, Yeu-chun, Ahn, Jungoh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heart failure (HF) is a coronary disease that affects people worldwide and has a high mortality rate. N-terminal pro-brain natriuretic peptide (NT-proBNP) has been proven to be a useful and accurate biomarker for diagnosing systolic HF. Here, we report a strategy for the high-level production of recombinant (r)NT-proBNP in Escherichia coli . An Fh8 tag with six histidines was fused to the N terminus of NT-proBNP along with the recognition site of tobacco etch virus (TEV) protease; the 6HFh8-NT-proBNP fusion peptide was expressed in flask cultures of E. coli in almost completely soluble form. The peptide was purified by HisTrap affinity chromatography, and the N-terminal tag was cleaved by TEV protease. After a second round of HisTrap affinity chromatography to remove the TEV protease and N-terminal tag, rNT-proBNP was isolated with high purity (≥ 98%) by carboxymethyl cation exchange chromatography. The final yield of purified rNT-proBNP (97.5 mg/l of bacterial culture; 3.25 mg/g of wet cell) was 55-fold higher than that reported in previous studies (0.5–1.75 mg/l of bacterial culture). Furthermore, the high cell density E. coli fed-batch culture enabled high-level production of rNT-proBNP in the order of grams per liter. The purified rNT-proBNP was detected by enzyme-linked immunosorbent assay and chemiluminescence enzyme immunoassay using commercial monoclonal antibodies recognizing different epitopes, showing a linear dose-response relationship in the range of tested concentrations (slope = 3.58 and r 2  = 0.995). These results demonstrate the efficiency of our process for mass producing (gram-to-liter level) rNT-proBNP with acceptable analytical performance.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-019-09826-8