Loading…
Intermittent large deviation of chaotic trajectory in Ikeda map: Signature of extreme events
We notice signatures of extreme eventslike behavior in a laser based Ikeda map. The trajectory of the system occasionally travels a large distance away from the bounded chaotic region, which appears as intermittent spiking events in the temporal dynamics. The large spiking events satisfy the conditi...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2019-04, Vol.29 (4), p.043131-043131 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We notice signatures of extreme eventslike behavior in a laser based Ikeda map. The trajectory of the system occasionally travels a large distance away from the bounded chaotic region, which appears as intermittent spiking events in the temporal dynamics. The large spiking events satisfy the conditions of extreme events as usually observed in dynamical systems. The probability density function of the large spiking events shows a long-tail distribution consistent with the characteristics of rare events. The interevent intervals obey a Poissonlike distribution. We locate the parameter regions of extreme events in phase diagrams. Furthermore, we study two Ikeda maps to explore how and when extreme events terminate via mutual interaction. A pure diffusion of information exchange is unable to terminate extreme events where synchronous occurrence of extreme events is only possible even for large interaction. On the other hand, a threshold-activated coupling can terminate extreme events above a critical value of mutual interaction. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.5092741 |