Loading…
In vitro subcellular characterization of flunixin liver metabolism in heifers, steers, and cows
The majority of cattle found to have violative liver residues of flunixin (FNX) in the United States are dairy cows. It has been hypothesized that illness of cows decreases the rate of FNX metabolism, resulting in violative residues at slaughter. Another contributing factor might be an age-related d...
Saved in:
Published in: | Research in veterinary science 2019-04, Vol.123, p.118-123 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The majority of cattle found to have violative liver residues of flunixin (FNX) in the United States are dairy cows. It has been hypothesized that illness of cows decreases the rate of FNX metabolism, resulting in violative residues at slaughter. Another contributing factor might be an age-related decrease in FNX metabolism, as dairy cull cows are typically older at slaughter than cattle raised for beef, rather than milk production. In order to investigate this possibility, subcellular fractions were prepared from liver slices from steers (n = 6) and heifers (n = 5) 48 mos of age. Cytochrome P450 (P450), NADPH-P450 reductase and glucose-6-phosphate dehydrogenase (G6PDH) activity and rate of 5-hydroxy FNX (5-OH FNX) formation were measured in liver homogenate, cytosolic, microsomal, and S9 fractions. Cows had lower concentrations of P450, NADPH-P450 reductase activity, and 5-OH FNX formation (P ≤ 0. 02), supporting the theory that advanced age may contribute to the higher incidence of violative FNX residues in dairy cows.
•In vitro liver microsomal metabolism of flunixin ↓ in cows vs heifers and steers•[P450] and NADPH-Cytochrome P450 reductase ↓ in cows•Primary metaboite 5-OH flunixin |
---|---|
ISSN: | 0034-5288 1532-2661 |
DOI: | 10.1016/j.rvsc.2018.12.012 |