Loading…

Alkaloid production by a Cinchona officinalis 'Ledgeriana' hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus

Cinchona officinalis 'Ledgeriana', former called Cinchona ledgeriana, hairy roots were initiated containing constitutive-expression constructs of cDNAs encoding the enzymes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) from Catharanthus roseus, two key enzymes in terpenoi...

Full description

Saved in:
Bibliographic Details
Published in:Plant cell reports 1999-12, Vol.19 (2), p.191-196
Main Authors: Geerlings, A, Hallard, D, Martinez Caballero, A, Lopes Cardoso, I, van der Heijden, R, Verpoorte, R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cinchona officinalis 'Ledgeriana', former called Cinchona ledgeriana, hairy roots were initiated containing constitutive-expression constructs of cDNAs encoding the enzymes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) from Catharanthus roseus, two key enzymes in terpenoid indole and quinoline alkaloid biosynthesis. The successful integration of these genes and the reporter gene gus-int was demonstrated using Southern blotting and the polymerase chain reaction. The products of TDC and STR, tryptamine and strictosidine, were found in high amounts, 1200 and 1950 μg g dry weight, respectively. Quinine and quinidine levels were found to rise up to 500 and 1000 μg g dry weight, respectively. The results show that genetic engineering with multiple genes is well possible in hairy roots of C. officinalis. However, 1 year after analyzing the hairy roots for the first time, they had completely lost their capacity to accumulate alkaloids.
ISSN:0721-7714
1432-203X
DOI:10.1007/s002990050732