Loading…
Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy
Chemodynamic therapy (CDT) is an emerging field, which utilizes intratumoral iron-mediated Fenton chemistry for cancer therapy. However, the slightly acidic tumor environment is improper for the classical Fenton reaction, which is generally energetic in a narrow pH range (e.g., pH = 3–4). Herein, a...
Saved in:
Published in: | ACS applied materials & interfaces 2019-05, Vol.11 (20), p.18133-18144 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemodynamic therapy (CDT) is an emerging field, which utilizes intratumoral iron-mediated Fenton chemistry for cancer therapy. However, the slightly acidic tumor environment is improper for the classical Fenton reaction, which is generally energetic in a narrow pH range (e.g., pH = 3–4). Herein, a kind of ultrasmall bovine serum albumin (BSA)-modified chalcopyrite nanoparticles (BSA-CuFeS2 NPs) was synthesized via a facile aqueous biomineralization strategy, which shows high dispersity and biocompatibility. Interestingly, the obtained BSA-CuFeS2 shows a pH-independent Fenton-like reaction, which could exert Fenton-like activity to efficiently generate •OH under a weak acidic tumor environment. Combined with the extraordinarily high photothermal conversion (38.8%), BSA-CuFeS2 shows the synergistic function of high photothermal therapy (PTT) and enhanced CDT, that is, PTT/CDT. Importantly, such ultrasmall BSA-CuFeS2 NPs measuring around 4.9 nm can be quickly cleared out of the body through kidneys and liver, thus effectively avoiding long-term toxicity and systemic toxicity. Moreover, BSA-CuFeS2 NPs can act as an efficient T 2-weighted magnetic resonance imaging (MRI) contrast agent to guide tumor ablation in vivo. This work offers a universal approach to boost production •OH by a pH-independent Fenton-like reaction strategy and achieves MRI-guided synergistic enhanced photothermal–CDT for highly efficient tumor treatment. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b02905 |