Loading…
Dynamics of Wastewater Effluent Contributions in Streams and Impacts on Drinking Water Supply via Riverbank Filtration in GermanyA National Reconnaissance
The discharge of wastewater effluents to a stream that is subsequently used for drinking water abstraction has been previously referred to as de facto water reuse. Where the abstraction of surface water for drinking water production occurs via induced bank filtration or aquifer recharge, additional...
Saved in:
Published in: | Environmental science & technology 2019-06, Vol.53 (11), p.6154-6161 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The discharge of wastewater effluents to a stream that is subsequently used for drinking water abstraction has been previously referred to as de facto water reuse. Where the abstraction of surface water for drinking water production occurs via induced bank filtration or aquifer recharge, additional site-specific factors should be considered to assess the impact of wastewater effluents on bank-filtered water. This study represents the first national reconnaissance to quantify wastewater effluent contributions in streams across Germany and consequences for indirect drinking water abstraction from these streams. An automated assessment using ArcGIS was conducted for river basins considering minimum and mean average discharge conditions of streams as well as discharge from more than 7500 wastewater facilities. In urban areas, where the natural base discharge is low, wastewater effluent contributions greater than 30–50% were determined under mean minimum discharge conditions, which commonly prevail from May to September. A conceptual model was proposed to estimate critical bank filtrate shares resulting in exceedances of monitoring trigger levels for health-relevant chemicals as a universal qualitative assessment regarding the relevance of de facto reuse conditions in surface waters used for drinking water abstraction. This approach was validated using chemical monitoring data for three case study locations. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.8b07216 |