Loading…
Construction of CNA35 Collagen-Targeted Phase-Changeable Nanoagents for Low-Intensity Focused Ultrasound-Triggered Ultrasound Molecular Imaging of Myocardial Fibrosis in Rabbits
Myocardial fibrosis plays an important role in the development of heart failure and malignant arrhythmia, which potentially increases the incidence of sudden cardiac death. Therefore, early detection of myocardial fibrosis is of great significance for evaluating the prognosis of patients and formula...
Saved in:
Published in: | ACS applied materials & interfaces 2019-07, Vol.11 (26), p.23006-23017 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Myocardial fibrosis plays an important role in the development of heart failure and malignant arrhythmia, which potentially increases the incidence of sudden cardiac death. Therefore, early detection of myocardial fibrosis is of great significance for evaluating the prognosis of patients and formulating appropriate treatment strategies. Late gadolinium-enhanced magnetic resonance imaging is considered as the currently effective strategy for noninvasive detection of myocardial fibrosis, but it still suffers from some critical issues. In this work, multifunctional CNA35-labeled perfluoropentane nanoparticles (CNA35-PFP NPs) have been elaborately designed and constructed for molecular imaging of fibrotic myocardium based on ultrasound imaging. These as-constructed CNA35-PFP NPs are intravenously infused into rabbit circulation with an animal model of myocardial infarction. Especially, these targeted CNA35-PFP NPs with nanoscale size could efficiently pass through the endothelial cell gap and adhere to the surface of fibroblasts in the fibrotic myocardium. Importantly, followed by low-intensity focused ultrasound irradiation on the myocardium, these intriguing CNA35-PFP NPs could transform from liquid into gaseous microbubbles, which further significantly enhanced the ultrasound contrast in the fibrotic area, facilitating the detection by diagnostic ultrasound imaging. Therefore, this work provides a desirable noninvasive, economical, and real-time imaging technique for the assessment of cardiac fibrosis with diagnostic ultrasound based on the rational design of liquid-to-gas phase-changeable nanoplatforms. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b05999 |