Loading…

Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide

van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported pol...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-07, Vol.31 (27), p.e1807788-n/a
Main Authors: Hu, Debo, Chen, Ke, Chen, Xinzhong, Guo, Xiangdong, Liu, Mengkun, Dai, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523
cites cdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523
container_end_page n/a
container_issue 27
container_start_page e1807788
container_title Advanced materials (Weinheim)
container_volume 31
creator Hu, Debo
Chen, Ke
Chen, Xinzhong
Guo, Xiangdong
Liu, Mengkun
Dai, Qing
description van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials. In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.”
doi_str_mv 10.1002/adma.201807788
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231905207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231905207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRbK1uXUrAjZvUOzPJPJa19QUpboouw2RyU1LyqImxdOdP8Df6S5zSWsGNm3vg8t3DPYeQcwpDCsCuTVqaIQOqQEqlDkifhoz6AejwkPRB89DXIlA9ctK2CwDQAsQx6XEKMtCU98l41lUmKdCb1qkpvJu8wazJqzlWFr288owX1auvj8-oblvv2VTeBBvvxZiidfMd512e4ik5ytwCz3Y6ILO729n4wY-e7h_Ho8i3XHLlW2WV0lwjGit1kmYsoyLAhAmTpTqQQjK0KSQmCYREYVKGBm0oAJQTxgfkamu7bOrXDtu3uMxbi0VhKqy7NmaMUw0hA-nQyz_oou6ayj3nKBEKzpj7ZECGW8o2Lp0LHi-bvDTNOqYQb9qNN-3G-3bdwcXOtktKTPf4T50O0FtglRe4_scuHk2mo1_zb5wBhfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265632289</pqid></control><display><type>article</type><title>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hu, Debo ; Chen, Ke ; Chen, Xinzhong ; Guo, Xiangdong ; Liu, Mengkun ; Dai, Qing</creator><creatorcontrib>Hu, Debo ; Chen, Ke ; Chen, Xinzhong ; Guo, Xiangdong ; Liu, Mengkun ; Dai, Qing</creatorcontrib><description>van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials. In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.”</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201807788</identifier><identifier>PMID: 31074913</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Birefringence ; Crystals ; Frequency ranges ; Infrared imaging ; Materials science ; Microcrystals ; Molybdenum disulfide ; near‐field imaging ; optical anisotropy ; Optical communication ; Phase retardation ; planar waveguides ; polarization management ; Thickness</subject><ispartof>Advanced materials (Weinheim), 2019-07, Vol.31 (27), p.e1807788-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</citedby><cites>FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</cites><orcidid>0000-0002-1750-0867 ; 0000-0001-9432-1670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31074913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Debo</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Guo, Xiangdong</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><title>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials. In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.”</description><subject>Anisotropy</subject><subject>Birefringence</subject><subject>Crystals</subject><subject>Frequency ranges</subject><subject>Infrared imaging</subject><subject>Materials science</subject><subject>Microcrystals</subject><subject>Molybdenum disulfide</subject><subject>near‐field imaging</subject><subject>optical anisotropy</subject><subject>Optical communication</subject><subject>Phase retardation</subject><subject>planar waveguides</subject><subject>polarization management</subject><subject>Thickness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRbK1uXUrAjZvUOzPJPJa19QUpboouw2RyU1LyqImxdOdP8Df6S5zSWsGNm3vg8t3DPYeQcwpDCsCuTVqaIQOqQEqlDkifhoz6AejwkPRB89DXIlA9ctK2CwDQAsQx6XEKMtCU98l41lUmKdCb1qkpvJu8wazJqzlWFr288owX1auvj8-oblvv2VTeBBvvxZiidfMd512e4ik5ytwCz3Y6ILO729n4wY-e7h_Ho8i3XHLlW2WV0lwjGit1kmYsoyLAhAmTpTqQQjK0KSQmCYREYVKGBm0oAJQTxgfkamu7bOrXDtu3uMxbi0VhKqy7NmaMUw0hA-nQyz_oou6ayj3nKBEKzpj7ZECGW8o2Lp0LHi-bvDTNOqYQb9qNN-3G-3bdwcXOtktKTPf4T50O0FtglRe4_scuHk2mo1_zb5wBhfg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hu, Debo</creator><creator>Chen, Ke</creator><creator>Chen, Xinzhong</creator><creator>Guo, Xiangdong</creator><creator>Liu, Mengkun</creator><creator>Dai, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid><orcidid>https://orcid.org/0000-0001-9432-1670</orcidid></search><sort><creationdate>20190701</creationdate><title>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</title><author>Hu, Debo ; Chen, Ke ; Chen, Xinzhong ; Guo, Xiangdong ; Liu, Mengkun ; Dai, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Birefringence</topic><topic>Crystals</topic><topic>Frequency ranges</topic><topic>Infrared imaging</topic><topic>Materials science</topic><topic>Microcrystals</topic><topic>Molybdenum disulfide</topic><topic>near‐field imaging</topic><topic>optical anisotropy</topic><topic>Optical communication</topic><topic>Phase retardation</topic><topic>planar waveguides</topic><topic>polarization management</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Debo</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Guo, Xiangdong</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Debo</au><au>Chen, Ke</au><au>Chen, Xinzhong</au><au>Guo, Xiangdong</au><au>Liu, Mengkun</au><au>Dai, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>31</volume><issue>27</issue><spage>e1807788</spage><epage>n/a</epage><pages>e1807788-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials. In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.”</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31074913</pmid><doi>10.1002/adma.201807788</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid><orcidid>https://orcid.org/0000-0001-9432-1670</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-07, Vol.31 (27), p.e1807788-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2231905207
source Wiley-Blackwell Read & Publish Collection
subjects Anisotropy
Birefringence
Crystals
Frequency ranges
Infrared imaging
Materials science
Microcrystals
Molybdenum disulfide
near‐field imaging
optical anisotropy
Optical communication
Phase retardation
planar waveguides
polarization management
Thickness
title Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Modal%20Birefringence%20in%20a%20Low%E2%80%90Loss%20Van%20Der%20Waals%20Waveguide&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hu,%20Debo&rft.date=2019-07-01&rft.volume=31&rft.issue=27&rft.spage=e1807788&rft.epage=n/a&rft.pages=e1807788-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201807788&rft_dat=%3Cproquest_cross%3E2231905207%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265632289&rft_id=info:pmid/31074913&rfr_iscdi=true