Loading…
Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide
van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported pol...
Saved in:
Published in: | Advanced materials (Weinheim) 2019-07, Vol.31 (27), p.e1807788-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523 |
---|---|
cites | cdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523 |
container_end_page | n/a |
container_issue | 27 |
container_start_page | e1807788 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Hu, Debo Chen, Ke Chen, Xinzhong Guo, Xiangdong Liu, Mengkun Dai, Qing |
description | van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials.
In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.” |
doi_str_mv | 10.1002/adma.201807788 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231905207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231905207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRbK1uXUrAjZvUOzPJPJa19QUpboouw2RyU1LyqImxdOdP8Df6S5zSWsGNm3vg8t3DPYeQcwpDCsCuTVqaIQOqQEqlDkifhoz6AejwkPRB89DXIlA9ctK2CwDQAsQx6XEKMtCU98l41lUmKdCb1qkpvJu8wazJqzlWFr288owX1auvj8-oblvv2VTeBBvvxZiidfMd512e4ik5ytwCz3Y6ILO729n4wY-e7h_Ho8i3XHLlW2WV0lwjGit1kmYsoyLAhAmTpTqQQjK0KSQmCYREYVKGBm0oAJQTxgfkamu7bOrXDtu3uMxbi0VhKqy7NmaMUw0hA-nQyz_oou6ayj3nKBEKzpj7ZECGW8o2Lp0LHi-bvDTNOqYQb9qNN-3G-3bdwcXOtktKTPf4T50O0FtglRe4_scuHk2mo1_zb5wBhfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265632289</pqid></control><display><type>article</type><title>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hu, Debo ; Chen, Ke ; Chen, Xinzhong ; Guo, Xiangdong ; Liu, Mengkun ; Dai, Qing</creator><creatorcontrib>Hu, Debo ; Chen, Ke ; Chen, Xinzhong ; Guo, Xiangdong ; Liu, Mengkun ; Dai, Qing</creatorcontrib><description>van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials.
In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.”</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201807788</identifier><identifier>PMID: 31074913</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Birefringence ; Crystals ; Frequency ranges ; Infrared imaging ; Materials science ; Microcrystals ; Molybdenum disulfide ; near‐field imaging ; optical anisotropy ; Optical communication ; Phase retardation ; planar waveguides ; polarization management ; Thickness</subject><ispartof>Advanced materials (Weinheim), 2019-07, Vol.31 (27), p.e1807788-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</citedby><cites>FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</cites><orcidid>0000-0002-1750-0867 ; 0000-0001-9432-1670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31074913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Debo</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Guo, Xiangdong</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><title>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials.
In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.”</description><subject>Anisotropy</subject><subject>Birefringence</subject><subject>Crystals</subject><subject>Frequency ranges</subject><subject>Infrared imaging</subject><subject>Materials science</subject><subject>Microcrystals</subject><subject>Molybdenum disulfide</subject><subject>near‐field imaging</subject><subject>optical anisotropy</subject><subject>Optical communication</subject><subject>Phase retardation</subject><subject>planar waveguides</subject><subject>polarization management</subject><subject>Thickness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRbK1uXUrAjZvUOzPJPJa19QUpboouw2RyU1LyqImxdOdP8Df6S5zSWsGNm3vg8t3DPYeQcwpDCsCuTVqaIQOqQEqlDkifhoz6AejwkPRB89DXIlA9ctK2CwDQAsQx6XEKMtCU98l41lUmKdCb1qkpvJu8wazJqzlWFr288owX1auvj8-oblvv2VTeBBvvxZiidfMd512e4ik5ytwCz3Y6ILO729n4wY-e7h_Ho8i3XHLlW2WV0lwjGit1kmYsoyLAhAmTpTqQQjK0KSQmCYREYVKGBm0oAJQTxgfkamu7bOrXDtu3uMxbi0VhKqy7NmaMUw0hA-nQyz_oou6ayj3nKBEKzpj7ZECGW8o2Lp0LHi-bvDTNOqYQb9qNN-3G-3bdwcXOtktKTPf4T50O0FtglRe4_scuHk2mo1_zb5wBhfg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hu, Debo</creator><creator>Chen, Ke</creator><creator>Chen, Xinzhong</creator><creator>Guo, Xiangdong</creator><creator>Liu, Mengkun</creator><creator>Dai, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid><orcidid>https://orcid.org/0000-0001-9432-1670</orcidid></search><sort><creationdate>20190701</creationdate><title>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</title><author>Hu, Debo ; Chen, Ke ; Chen, Xinzhong ; Guo, Xiangdong ; Liu, Mengkun ; Dai, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Birefringence</topic><topic>Crystals</topic><topic>Frequency ranges</topic><topic>Infrared imaging</topic><topic>Materials science</topic><topic>Microcrystals</topic><topic>Molybdenum disulfide</topic><topic>near‐field imaging</topic><topic>optical anisotropy</topic><topic>Optical communication</topic><topic>Phase retardation</topic><topic>planar waveguides</topic><topic>polarization management</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Debo</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Xinzhong</creatorcontrib><creatorcontrib>Guo, Xiangdong</creatorcontrib><creatorcontrib>Liu, Mengkun</creatorcontrib><creatorcontrib>Dai, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Debo</au><au>Chen, Ke</au><au>Chen, Xinzhong</au><au>Guo, Xiangdong</au><au>Liu, Mengkun</au><au>Dai, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>31</volume><issue>27</issue><spage>e1807788</spage><epage>n/a</epage><pages>e1807788-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse‐magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS2) is a natural uniaxial vdW crystal with extreme elliptic anisotropy in the frequency range of optical communication. Both transverse‐electric (TE) polarized ordinary and TM polarized extraordinary waveguide modes can be supported in MoS2 microcrystals with suitable thicknesses. In this work, low‐loss transmission of these guided modes is demonstrated with nano‐optical imaging at the near‐infrared (NIR) wavelength (1530 nm). More importantly, by combining theoretical calculations and NIR nanoimaging, the modal birefringence between the orthogonally polarized TE and TM modes is shown to be tunable in both sign and magnitude via varying the thickness of the MoS2 microcrystal. This tunability represents a unique new opportunity to control the polarization behavior of photons with vdW materials.
In a well‐designed van der Waals (vdW) waveguide, the orthogonally polarized ordinary and extraordinary guided modes can be degenerate and propagate with the same phase velocity. This means that the photons propagate through the anisotropic waveguide without altering their polarization state, just like they propagate through an isotropic bulk material. In this sense, the observed phenomenon can be summarized as “isotropy from anisotropy.”</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31074913</pmid><doi>10.1002/adma.201807788</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1750-0867</orcidid><orcidid>https://orcid.org/0000-0001-9432-1670</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-07, Vol.31 (27), p.e1807788-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231905207 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anisotropy Birefringence Crystals Frequency ranges Infrared imaging Materials science Microcrystals Molybdenum disulfide near‐field imaging optical anisotropy Optical communication Phase retardation planar waveguides polarization management Thickness |
title | Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Modal%20Birefringence%20in%20a%20Low%E2%80%90Loss%20Van%20Der%20Waals%20Waveguide&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hu,%20Debo&rft.date=2019-07-01&rft.volume=31&rft.issue=27&rft.spage=e1807788&rft.epage=n/a&rft.pages=e1807788-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201807788&rft_dat=%3Cproquest_cross%3E2231905207%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3738-c8c88939eeac79bdf2f164eb26afd947672ecd0bab467e6ad2eaec56008ec523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2265632289&rft_id=info:pmid/31074913&rfr_iscdi=true |