Loading…

Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes

Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting sys...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2019-06, Vol.10 (11), p.2715-2724
Main Authors: Löhner, A, Kunsel, T, Röhr, M. I. S, Jansen, T. L. C, Sengupta, S, Würthner, F, Knoester, J, Köhler, J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83
cites cdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83
container_end_page 2724
container_issue 11
container_start_page 2715
container_title The journal of physical chemistry letters
container_volume 10
creator Löhner, A
Kunsel, T
Röhr, M. I. S
Jansen, T. L. C
Sengupta, S
Würthner, F
Knoester, J
Köhler, J
description Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques.
doi_str_mv 10.1021/acs.jpclett.9b00303
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231945111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231945111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EoqXwC5BQRpa0dhI79ggVUEQFQ4HVchy7uEriYjtI_HtcGhAT091J7929-wA4R3CKYIZmQvrpZisbFcKUVRDmMD8AY8QKmpaI4sM__QiceL-BkDBIy2MwyhHELCN0DB5WWyWDE00iujpZBdfL0O_GV-GMCMZ2PrE6uTa2Na0KRiZLs34L6UK4D-WD6dbJo-hs6CvlT8GRFo1XZ0OdgJfbm-f5Il0-3d3Pr5apKDAJaVHXqixIhitUlxjnNNMxFaMlqimlmlFCESOkQrhkMo66hArVREFd5RnUNJ-Ay_3erbPvfUzBW-OlahrRKdt7nmV5_BwjhKI030uls947pfnWmVa4T44g31HkkSIfKPKBYnRdDAf6qlX1r-cHWxTM9oJvt-1dF__9d-UX8CKAbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231945111</pqid></control><display><type>article</type><title>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Löhner, A ; Kunsel, T ; Röhr, M. I. S ; Jansen, T. L. C ; Sengupta, S ; Würthner, F ; Knoester, J ; Köhler, J</creator><creatorcontrib>Löhner, A ; Kunsel, T ; Röhr, M. I. S ; Jansen, T. L. C ; Sengupta, S ; Würthner, F ; Knoester, J ; Köhler, J</creatorcontrib><description>Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b00303</identifier><identifier>PMID: 31059268</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2019-06, Vol.10 (11), p.2715-2724</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</citedby><cites>FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</cites><orcidid>0000-0003-1883-6538 ; 0000-0001-6066-6080 ; 0000-0001-7245-0471 ; 0000-0002-2128-3498 ; 0000-0002-4214-4008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31059268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Löhner, A</creatorcontrib><creatorcontrib>Kunsel, T</creatorcontrib><creatorcontrib>Röhr, M. I. S</creatorcontrib><creatorcontrib>Jansen, T. L. C</creatorcontrib><creatorcontrib>Sengupta, S</creatorcontrib><creatorcontrib>Würthner, F</creatorcontrib><creatorcontrib>Knoester, J</creatorcontrib><creatorcontrib>Köhler, J</creatorcontrib><title>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EoqXwC5BQRpa0dhI79ggVUEQFQ4HVchy7uEriYjtI_HtcGhAT091J7929-wA4R3CKYIZmQvrpZisbFcKUVRDmMD8AY8QKmpaI4sM__QiceL-BkDBIy2MwyhHELCN0DB5WWyWDE00iujpZBdfL0O_GV-GMCMZ2PrE6uTa2Na0KRiZLs34L6UK4D-WD6dbJo-hs6CvlT8GRFo1XZ0OdgJfbm-f5Il0-3d3Pr5apKDAJaVHXqixIhitUlxjnNNMxFaMlqimlmlFCESOkQrhkMo66hArVREFd5RnUNJ-Ay_3erbPvfUzBW-OlahrRKdt7nmV5_BwjhKI030uls947pfnWmVa4T44g31HkkSIfKPKBYnRdDAf6qlX1r-cHWxTM9oJvt-1dF__9d-UX8CKAbA</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Löhner, A</creator><creator>Kunsel, T</creator><creator>Röhr, M. I. S</creator><creator>Jansen, T. L. C</creator><creator>Sengupta, S</creator><creator>Würthner, F</creator><creator>Knoester, J</creator><creator>Köhler, J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1883-6538</orcidid><orcidid>https://orcid.org/0000-0001-6066-6080</orcidid><orcidid>https://orcid.org/0000-0001-7245-0471</orcidid><orcidid>https://orcid.org/0000-0002-2128-3498</orcidid><orcidid>https://orcid.org/0000-0002-4214-4008</orcidid></search><sort><creationdate>20190606</creationdate><title>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</title><author>Löhner, A ; Kunsel, T ; Röhr, M. I. S ; Jansen, T. L. C ; Sengupta, S ; Würthner, F ; Knoester, J ; Köhler, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Löhner, A</creatorcontrib><creatorcontrib>Kunsel, T</creatorcontrib><creatorcontrib>Röhr, M. I. S</creatorcontrib><creatorcontrib>Jansen, T. L. C</creatorcontrib><creatorcontrib>Sengupta, S</creatorcontrib><creatorcontrib>Würthner, F</creatorcontrib><creatorcontrib>Knoester, J</creatorcontrib><creatorcontrib>Köhler, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Löhner, A</au><au>Kunsel, T</au><au>Röhr, M. I. S</au><au>Jansen, T. L. C</au><au>Sengupta, S</au><au>Würthner, F</au><au>Knoester, J</au><au>Köhler, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>10</volume><issue>11</issue><spage>2715</spage><epage>2724</epage><pages>2715-2724</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31059268</pmid><doi>10.1021/acs.jpclett.9b00303</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1883-6538</orcidid><orcidid>https://orcid.org/0000-0001-6066-6080</orcidid><orcidid>https://orcid.org/0000-0001-7245-0471</orcidid><orcidid>https://orcid.org/0000-0002-2128-3498</orcidid><orcidid>https://orcid.org/0000-0002-4214-4008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2019-06, Vol.10 (11), p.2715-2724
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2231945111
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20and%20Structural%20Variations%20of%20Biomimetic%20Light-Harvesting%20Nanotubes&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Lo%CC%88hner,%20A&rft.date=2019-06-06&rft.volume=10&rft.issue=11&rft.spage=2715&rft.epage=2724&rft.pages=2715-2724&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b00303&rft_dat=%3Cproquest_cross%3E2231945111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231945111&rft_id=info:pmid/31059268&rfr_iscdi=true