Loading…
Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes
Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting sys...
Saved in:
Published in: | The journal of physical chemistry letters 2019-06, Vol.10 (11), p.2715-2724 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83 |
---|---|
cites | cdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83 |
container_end_page | 2724 |
container_issue | 11 |
container_start_page | 2715 |
container_title | The journal of physical chemistry letters |
container_volume | 10 |
creator | Löhner, A Kunsel, T Röhr, M. I. S Jansen, T. L. C Sengupta, S Würthner, F Knoester, J Köhler, J |
description | Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques. |
doi_str_mv | 10.1021/acs.jpclett.9b00303 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2231945111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231945111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EoqXwC5BQRpa0dhI79ggVUEQFQ4HVchy7uEriYjtI_HtcGhAT091J7929-wA4R3CKYIZmQvrpZisbFcKUVRDmMD8AY8QKmpaI4sM__QiceL-BkDBIy2MwyhHELCN0DB5WWyWDE00iujpZBdfL0O_GV-GMCMZ2PrE6uTa2Na0KRiZLs34L6UK4D-WD6dbJo-hs6CvlT8GRFo1XZ0OdgJfbm-f5Il0-3d3Pr5apKDAJaVHXqixIhitUlxjnNNMxFaMlqimlmlFCESOkQrhkMo66hArVREFd5RnUNJ-Ay_3erbPvfUzBW-OlahrRKdt7nmV5_BwjhKI030uls947pfnWmVa4T44g31HkkSIfKPKBYnRdDAf6qlX1r-cHWxTM9oJvt-1dF__9d-UX8CKAbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231945111</pqid></control><display><type>article</type><title>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Löhner, A ; Kunsel, T ; Röhr, M. I. S ; Jansen, T. L. C ; Sengupta, S ; Würthner, F ; Knoester, J ; Köhler, J</creator><creatorcontrib>Löhner, A ; Kunsel, T ; Röhr, M. I. S ; Jansen, T. L. C ; Sengupta, S ; Würthner, F ; Knoester, J ; Köhler, J</creatorcontrib><description>Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b00303</identifier><identifier>PMID: 31059268</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2019-06, Vol.10 (11), p.2715-2724</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</citedby><cites>FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</cites><orcidid>0000-0003-1883-6538 ; 0000-0001-6066-6080 ; 0000-0001-7245-0471 ; 0000-0002-2128-3498 ; 0000-0002-4214-4008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31059268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Löhner, A</creatorcontrib><creatorcontrib>Kunsel, T</creatorcontrib><creatorcontrib>Röhr, M. I. S</creatorcontrib><creatorcontrib>Jansen, T. L. C</creatorcontrib><creatorcontrib>Sengupta, S</creatorcontrib><creatorcontrib>Würthner, F</creatorcontrib><creatorcontrib>Knoester, J</creatorcontrib><creatorcontrib>Köhler, J</creatorcontrib><title>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EoqXwC5BQRpa0dhI79ggVUEQFQ4HVchy7uEriYjtI_HtcGhAT091J7929-wA4R3CKYIZmQvrpZisbFcKUVRDmMD8AY8QKmpaI4sM__QiceL-BkDBIy2MwyhHELCN0DB5WWyWDE00iujpZBdfL0O_GV-GMCMZ2PrE6uTa2Na0KRiZLs34L6UK4D-WD6dbJo-hs6CvlT8GRFo1XZ0OdgJfbm-f5Il0-3d3Pr5apKDAJaVHXqixIhitUlxjnNNMxFaMlqimlmlFCESOkQrhkMo66hArVREFd5RnUNJ-Ay_3erbPvfUzBW-OlahrRKdt7nmV5_BwjhKI030uls947pfnWmVa4T44g31HkkSIfKPKBYnRdDAf6qlX1r-cHWxTM9oJvt-1dF__9d-UX8CKAbA</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Löhner, A</creator><creator>Kunsel, T</creator><creator>Röhr, M. I. S</creator><creator>Jansen, T. L. C</creator><creator>Sengupta, S</creator><creator>Würthner, F</creator><creator>Knoester, J</creator><creator>Köhler, J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1883-6538</orcidid><orcidid>https://orcid.org/0000-0001-6066-6080</orcidid><orcidid>https://orcid.org/0000-0001-7245-0471</orcidid><orcidid>https://orcid.org/0000-0002-2128-3498</orcidid><orcidid>https://orcid.org/0000-0002-4214-4008</orcidid></search><sort><creationdate>20190606</creationdate><title>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</title><author>Löhner, A ; Kunsel, T ; Röhr, M. I. S ; Jansen, T. L. C ; Sengupta, S ; Würthner, F ; Knoester, J ; Köhler, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Löhner, A</creatorcontrib><creatorcontrib>Kunsel, T</creatorcontrib><creatorcontrib>Röhr, M. I. S</creatorcontrib><creatorcontrib>Jansen, T. L. C</creatorcontrib><creatorcontrib>Sengupta, S</creatorcontrib><creatorcontrib>Würthner, F</creatorcontrib><creatorcontrib>Knoester, J</creatorcontrib><creatorcontrib>Köhler, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Löhner, A</au><au>Kunsel, T</au><au>Röhr, M. I. S</au><au>Jansen, T. L. C</au><au>Sengupta, S</au><au>Würthner, F</au><au>Knoester, J</au><au>Köhler, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>10</volume><issue>11</issue><spage>2715</spage><epage>2724</epage><pages>2715-2724</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Bioinspired, self-assembled nanotubes have been investigated by low-temperature, polarization-resolved single-tube spectroscopy. These assemblies are based on zinc chlorin monomers and are considered as model systems that resemble the secondary structural elements in the natural light-harvesting systems of green (non)sulfur bacteria. Compared to the natural systems, the spectral parameters extracted from the single-nanotube spectra feature distributions with significantly smaller widths, which is ascribed to a tremendous reduction of structural heterogeneity in the artificial systems. Employing quantum chemical molecular modeling the spectra of individual nanotubes can be explained consistently only for a molecular packing model that is fundamentally different from those considered so far for the natural systems. Subsequent theoretical simulations reveal that the remaining spectral variations between single nanotubes can be traced back to small variations of the mutual orientations of the monomer transition dipole moments that are far beyond the resolving power of high-resolution electron microscopy imaging techniques.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31059268</pmid><doi>10.1021/acs.jpclett.9b00303</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1883-6538</orcidid><orcidid>https://orcid.org/0000-0001-6066-6080</orcidid><orcidid>https://orcid.org/0000-0001-7245-0471</orcidid><orcidid>https://orcid.org/0000-0002-2128-3498</orcidid><orcidid>https://orcid.org/0000-0002-4214-4008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2019-06, Vol.10 (11), p.2715-2724 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2231945111 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Spectral and Structural Variations of Biomimetic Light-Harvesting Nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20and%20Structural%20Variations%20of%20Biomimetic%20Light-Harvesting%20Nanotubes&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Lo%CC%88hner,%20A&rft.date=2019-06-06&rft.volume=10&rft.issue=11&rft.spage=2715&rft.epage=2724&rft.pages=2715-2724&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b00303&rft_dat=%3Cproquest_cross%3E2231945111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a456t-4dde74625b1d755382f0879871d888f98681966b1579cf98f70e1d6e0fb320f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231945111&rft_id=info:pmid/31059268&rfr_iscdi=true |