Loading…

Development of Octreotide-Loaded Chitosan and Heparin Nanoparticles: Evaluation of Surface Modification Effect on Physicochemical Properties and Macrophage Uptake

Octreotide (OCT) is a therapeutic peptide which is administered for the treatment of acromegaly. The purpose of this study was to design a new polyethylene glycol (PEG)–conjugated nanoparticle (PEG-NP) to overcome the short half-life and poor stability of OCT. The developed PEG-NPs were compared wit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 2019-09, Vol.108 (9), p.3036-3045
Main Authors: Ghofrani, Mahdieh, Shirmard, Leila Rezaie, Dehghankelishadi, Pouya, Amini, Mohsen, Dorkoosh, Farid A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Octreotide (OCT) is a therapeutic peptide which is administered for the treatment of acromegaly. The purpose of this study was to design a new polyethylene glycol (PEG)–conjugated nanoparticle (PEG-NP) to overcome the short half-life and poor stability of OCT. The developed PEG-NPs were compared with non-PEGylated NPs with respect to their size, morphological characteristics, loading efficiency, release profile, and macrophage uptake. The OCT-loaded NPs and PEG-NPs were prepared by ionic complexion of chitosan (Cs) with either heparin (Hp) or PEGylated heparin (PEG-Hp). The chemical structure of PEG-Hp was confirmed by IR and proton nuclear magnetic resonance. Morphological analyses by scanning electron microscopy showed that NPs and PEG-NPs have a uniform shape. Dynamic laser scattering measurements indicated that hydrodynamic diameter of NPs and PEG-NPs were 222.5 ± 10.0 nm and 334.9 ± 6.7 nm, respectively. NPs and PEG-NPs had a positive zeta potential of about 32.5 ± 1.1 mv and 20.6 ± 2.4 mv, respectively. Entrapment efficiency was 61.4 ± 1.0% and 55.7 ± 2.4% for NPs and PEG-NPs, respectively. Compared with the NPs, the PEG-NPs exhibited a slower release profile. Subsequently, fluorescein isothiocyanate–labeled chitosanCs was synthesized and used to evaluate the stealth characteristic of PEG-NPs. In vitro macrophage uptake of fluorescently labeled NPs was measured by flow cytometry.
ISSN:0022-3549
1520-6017
DOI:10.1016/j.xphs.2019.05.002