Loading…

Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis

This study aimed to determine the regulatory role of toll-like receptor 7 (TLR7) in receptor activator of nuclear factor kappa-B ligand (RANKL) production and osteoclast differentiation in rheumatoid arthritis (RA). In confocal microscopy, the co-expression of TLR7, CD55 and RANKL was determined in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biochemistry (Tokyo) 2019-09, Vol.166 (3), p.259-270
Main Authors: Kim, Kyoung-Woon, Kim, Bo-Mi, Won, Ji-Yeon, Lee, Kyung-Ann, Kim, Hae-Rim, Lee, Sang-Heon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-3e2cb8fe0007475423f6fc268cff3753a451a4b9e312e04f30ca03b001fc9e433
cites cdi_FETCH-LOGICAL-c402t-3e2cb8fe0007475423f6fc268cff3753a451a4b9e312e04f30ca03b001fc9e433
container_end_page 270
container_issue 3
container_start_page 259
container_title Journal of biochemistry (Tokyo)
container_volume 166
creator Kim, Kyoung-Woon
Kim, Bo-Mi
Won, Ji-Yeon
Lee, Kyung-Ann
Kim, Hae-Rim
Lee, Sang-Heon
description This study aimed to determine the regulatory role of toll-like receptor 7 (TLR7) in receptor activator of nuclear factor kappa-B ligand (RANKL) production and osteoclast differentiation in rheumatoid arthritis (RA). In confocal microscopy, the co-expression of TLR7, CD55 and RANKL was determined in RA synovial fibroblasts. After RA synovial fibroblasts were treated with imiquimod, the RANKL gene expression and protein production were determined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis from peripheral blood CD14+ monocytes which were cultured with imiquimod was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. The signal pathways mediating the TLR7-induced RANKL expression and osteoclastogenesis were analysed after inhibition of intracellular signal molecules and their phosphorylation. Imiquimod stimulated the expression of TLR7 and RANKL and production of RANKL in RA synovial fibroblasts, increasing the phosphorylation of TRAF6, IRF7, mitogen-activated protein kinases (MAPK), c-Jun and NFATc1. When CD14+ monocytes were cultured with imiquimod or co-cultured with imiquimod-pre-treated RA synovial fibroblasts, they were differentiated into TRAP+ multinucleated osteoclasts in the absence of RANKL. TLR7 activation-induced osteoclastogenesis in RA through direct induction of osteoclast differentiation from its precursors and up-regulation of RANKL production in RA synovial fibroblasts. Thus, the blockage of TLR7 pathway could be a promising therapeutic strategy for preventing bone destruction in RA.
doi_str_mv 10.1093/jb/mvz033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232000932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232000932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3e2cb8fe0007475423f6fc268cff3753a451a4b9e312e04f30ca03b001fc9e433</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMotlYX_gGZpS7G3uRmXkspPgoFNxXcDZn0pk2daWqSEfTX29Lq6n4XDmdxGLvmcM-hwvG6GXdfP4B4woa8yPJU5Bk_ZUMAwdNKyPcBuwhhvX8F4jkbIIcyr2Q5ZNO5a9u0tR-UeNK0jc4nxW4u-1ZFCokLkZxuVYhuSRsKNiR2k_gV9Z2Kzi4S5ePK22jDJTszqg10dbwj9vb0OJ-8pLPX5-nkYZZqCSKmSEI3pSEAKGSRSYEmN1rkpTYGiwyVzLiSTUXIBYE0CFoBNgDc6Iok4ojdHrxb7z57CrHubNDUtmpDrg-1ECh28grFDr07oNq7EDyZeuttp_x3zaHel6vXTX0ot2Nvjtq-6WjxT_6lwl8mM2pi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232000932</pqid></control><display><type>article</type><title>Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis</title><source>Oxford Journals Online</source><creator>Kim, Kyoung-Woon ; Kim, Bo-Mi ; Won, Ji-Yeon ; Lee, Kyung-Ann ; Kim, Hae-Rim ; Lee, Sang-Heon</creator><creatorcontrib>Kim, Kyoung-Woon ; Kim, Bo-Mi ; Won, Ji-Yeon ; Lee, Kyung-Ann ; Kim, Hae-Rim ; Lee, Sang-Heon</creatorcontrib><description>This study aimed to determine the regulatory role of toll-like receptor 7 (TLR7) in receptor activator of nuclear factor kappa-B ligand (RANKL) production and osteoclast differentiation in rheumatoid arthritis (RA). In confocal microscopy, the co-expression of TLR7, CD55 and RANKL was determined in RA synovial fibroblasts. After RA synovial fibroblasts were treated with imiquimod, the RANKL gene expression and protein production were determined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis from peripheral blood CD14+ monocytes which were cultured with imiquimod was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. The signal pathways mediating the TLR7-induced RANKL expression and osteoclastogenesis were analysed after inhibition of intracellular signal molecules and their phosphorylation. Imiquimod stimulated the expression of TLR7 and RANKL and production of RANKL in RA synovial fibroblasts, increasing the phosphorylation of TRAF6, IRF7, mitogen-activated protein kinases (MAPK), c-Jun and NFATc1. When CD14+ monocytes were cultured with imiquimod or co-cultured with imiquimod-pre-treated RA synovial fibroblasts, they were differentiated into TRAP+ multinucleated osteoclasts in the absence of RANKL. TLR7 activation-induced osteoclastogenesis in RA through direct induction of osteoclast differentiation from its precursors and up-regulation of RANKL production in RA synovial fibroblasts. Thus, the blockage of TLR7 pathway could be a promising therapeutic strategy for preventing bone destruction in RA.</description><identifier>ISSN: 0021-924X</identifier><identifier>EISSN: 1756-2651</identifier><identifier>DOI: 10.1093/jb/mvz033</identifier><identifier>PMID: 31086948</identifier><language>eng</language><publisher>England</publisher><subject>Aged ; Arthritis, Rheumatoid - metabolism ; Arthritis, Rheumatoid - pathology ; Cells, Cultured ; Female ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Humans ; Male ; Middle Aged ; Osteogenesis ; Toll-Like Receptor 7 - metabolism</subject><ispartof>Journal of biochemistry (Tokyo), 2019-09, Vol.166 (3), p.259-270</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3e2cb8fe0007475423f6fc268cff3753a451a4b9e312e04f30ca03b001fc9e433</citedby><cites>FETCH-LOGICAL-c402t-3e2cb8fe0007475423f6fc268cff3753a451a4b9e312e04f30ca03b001fc9e433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31086948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyoung-Woon</creatorcontrib><creatorcontrib>Kim, Bo-Mi</creatorcontrib><creatorcontrib>Won, Ji-Yeon</creatorcontrib><creatorcontrib>Lee, Kyung-Ann</creatorcontrib><creatorcontrib>Kim, Hae-Rim</creatorcontrib><creatorcontrib>Lee, Sang-Heon</creatorcontrib><title>Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis</title><title>Journal of biochemistry (Tokyo)</title><addtitle>J Biochem</addtitle><description>This study aimed to determine the regulatory role of toll-like receptor 7 (TLR7) in receptor activator of nuclear factor kappa-B ligand (RANKL) production and osteoclast differentiation in rheumatoid arthritis (RA). In confocal microscopy, the co-expression of TLR7, CD55 and RANKL was determined in RA synovial fibroblasts. After RA synovial fibroblasts were treated with imiquimod, the RANKL gene expression and protein production were determined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis from peripheral blood CD14+ monocytes which were cultured with imiquimod was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. The signal pathways mediating the TLR7-induced RANKL expression and osteoclastogenesis were analysed after inhibition of intracellular signal molecules and their phosphorylation. Imiquimod stimulated the expression of TLR7 and RANKL and production of RANKL in RA synovial fibroblasts, increasing the phosphorylation of TRAF6, IRF7, mitogen-activated protein kinases (MAPK), c-Jun and NFATc1. When CD14+ monocytes were cultured with imiquimod or co-cultured with imiquimod-pre-treated RA synovial fibroblasts, they were differentiated into TRAP+ multinucleated osteoclasts in the absence of RANKL. TLR7 activation-induced osteoclastogenesis in RA through direct induction of osteoclast differentiation from its precursors and up-regulation of RANKL production in RA synovial fibroblasts. Thus, the blockage of TLR7 pathway could be a promising therapeutic strategy for preventing bone destruction in RA.</description><subject>Aged</subject><subject>Arthritis, Rheumatoid - metabolism</subject><subject>Arthritis, Rheumatoid - pathology</subject><subject>Cells, Cultured</subject><subject>Female</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Osteogenesis</subject><subject>Toll-Like Receptor 7 - metabolism</subject><issn>0021-924X</issn><issn>1756-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMotlYX_gGZpS7G3uRmXkspPgoFNxXcDZn0pk2daWqSEfTX29Lq6n4XDmdxGLvmcM-hwvG6GXdfP4B4woa8yPJU5Bk_ZUMAwdNKyPcBuwhhvX8F4jkbIIcyr2Q5ZNO5a9u0tR-UeNK0jc4nxW4u-1ZFCokLkZxuVYhuSRsKNiR2k_gV9Z2Kzi4S5ePK22jDJTszqg10dbwj9vb0OJ-8pLPX5-nkYZZqCSKmSEI3pSEAKGSRSYEmN1rkpTYGiwyVzLiSTUXIBYE0CFoBNgDc6Iok4ojdHrxb7z57CrHubNDUtmpDrg-1ECh28grFDr07oNq7EDyZeuttp_x3zaHel6vXTX0ot2Nvjtq-6WjxT_6lwl8mM2pi</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kim, Kyoung-Woon</creator><creator>Kim, Bo-Mi</creator><creator>Won, Ji-Yeon</creator><creator>Lee, Kyung-Ann</creator><creator>Kim, Hae-Rim</creator><creator>Lee, Sang-Heon</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis</title><author>Kim, Kyoung-Woon ; Kim, Bo-Mi ; Won, Ji-Yeon ; Lee, Kyung-Ann ; Kim, Hae-Rim ; Lee, Sang-Heon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3e2cb8fe0007475423f6fc268cff3753a451a4b9e312e04f30ca03b001fc9e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aged</topic><topic>Arthritis, Rheumatoid - metabolism</topic><topic>Arthritis, Rheumatoid - pathology</topic><topic>Cells, Cultured</topic><topic>Female</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Osteogenesis</topic><topic>Toll-Like Receptor 7 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyoung-Woon</creatorcontrib><creatorcontrib>Kim, Bo-Mi</creatorcontrib><creatorcontrib>Won, Ji-Yeon</creatorcontrib><creatorcontrib>Lee, Kyung-Ann</creatorcontrib><creatorcontrib>Kim, Hae-Rim</creatorcontrib><creatorcontrib>Lee, Sang-Heon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biochemistry (Tokyo)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyoung-Woon</au><au>Kim, Bo-Mi</au><au>Won, Ji-Yeon</au><au>Lee, Kyung-Ann</au><au>Kim, Hae-Rim</au><au>Lee, Sang-Heon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis</atitle><jtitle>Journal of biochemistry (Tokyo)</jtitle><addtitle>J Biochem</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>166</volume><issue>3</issue><spage>259</spage><epage>270</epage><pages>259-270</pages><issn>0021-924X</issn><eissn>1756-2651</eissn><abstract>This study aimed to determine the regulatory role of toll-like receptor 7 (TLR7) in receptor activator of nuclear factor kappa-B ligand (RANKL) production and osteoclast differentiation in rheumatoid arthritis (RA). In confocal microscopy, the co-expression of TLR7, CD55 and RANKL was determined in RA synovial fibroblasts. After RA synovial fibroblasts were treated with imiquimod, the RANKL gene expression and protein production were determined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis from peripheral blood CD14+ monocytes which were cultured with imiquimod was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. The signal pathways mediating the TLR7-induced RANKL expression and osteoclastogenesis were analysed after inhibition of intracellular signal molecules and their phosphorylation. Imiquimod stimulated the expression of TLR7 and RANKL and production of RANKL in RA synovial fibroblasts, increasing the phosphorylation of TRAF6, IRF7, mitogen-activated protein kinases (MAPK), c-Jun and NFATc1. When CD14+ monocytes were cultured with imiquimod or co-cultured with imiquimod-pre-treated RA synovial fibroblasts, they were differentiated into TRAP+ multinucleated osteoclasts in the absence of RANKL. TLR7 activation-induced osteoclastogenesis in RA through direct induction of osteoclast differentiation from its precursors and up-regulation of RANKL production in RA synovial fibroblasts. Thus, the blockage of TLR7 pathway could be a promising therapeutic strategy for preventing bone destruction in RA.</abstract><cop>England</cop><pmid>31086948</pmid><doi>10.1093/jb/mvz033</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-924X
ispartof Journal of biochemistry (Tokyo), 2019-09, Vol.166 (3), p.259-270
issn 0021-924X
1756-2651
language eng
recordid cdi_proquest_miscellaneous_2232000932
source Oxford Journals Online
subjects Aged
Arthritis, Rheumatoid - metabolism
Arthritis, Rheumatoid - pathology
Cells, Cultured
Female
Fibroblasts - metabolism
Fibroblasts - pathology
Humans
Male
Middle Aged
Osteogenesis
Toll-Like Receptor 7 - metabolism
title Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toll-like%20receptor%207%20regulates%20osteoclastogenesis%20in%20rheumatoid%20arthritis&rft.jtitle=Journal%20of%20biochemistry%20(Tokyo)&rft.au=Kim,%20Kyoung-Woon&rft.date=2019-09-01&rft.volume=166&rft.issue=3&rft.spage=259&rft.epage=270&rft.pages=259-270&rft.issn=0021-924X&rft.eissn=1756-2651&rft_id=info:doi/10.1093/jb/mvz033&rft_dat=%3Cproquest_cross%3E2232000932%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3e2cb8fe0007475423f6fc268cff3753a451a4b9e312e04f30ca03b001fc9e433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232000932&rft_id=info:pmid/31086948&rfr_iscdi=true