Loading…

Behavioral Responses and Pupa Development Patterns After Hypoxia or Anoxia in a Desiccation-Resistant Anastrepha ludens Strain

The aim of this study was to experimentally test for adult cross-resistance to hypoxia or anoxia in a desiccation-resistant population of Anastrepha ludens Loew. We compared desiccation resistant flies with unselected (control) flies by measuring the effect of pre-emergence hypoxia on some fitness p...

Full description

Saved in:
Bibliographic Details
Published in:Neotropical entomology 2019-10, Vol.48 (5), p.739-747
Main Authors: Lara-Pérez, L A, Arredondo, J, Tejeda, M T, Díaz-Fleischer, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to experimentally test for adult cross-resistance to hypoxia or anoxia in a desiccation-resistant population of Anastrepha ludens Loew. We compared desiccation resistant flies with unselected (control) flies by measuring the effect of pre-emergence hypoxia on some fitness parameters (emergence, flight ability, copulation success, latency to copulation, copulation duration, ovary size). Anoxia effects were determined using eye color changes during pupa development and fly emergence after re-oxygenation. Both strains were negatively affected in all measured parameters when exposed to hypoxia for more than 48 h. However, after hypoxia, control flies showed, in general, shorter latency to mate and longer copula duration than desiccation-resistant flies. Anoxia-induced arrest of pupa development, whereas returning to normoxia conditions induced resumption of development. Anoxia period length (longer than 72 h) increased mortality to 100% in the control line, whereas the desiccation-resistant line survived even at 120 h of anoxia. Thus, pre-release hypoxia must not exceed 24 h in order to maintain insect quality independently of fly type.
ISSN:1519-566X
1678-8052
DOI:10.1007/s13744-019-00690-9