Loading…

Bicarbonate and unsaturated fatty acids enhance capsular polysaccharide synthesis gene expression in oral streptococci, Streptococcus anginosus

We recently reported on the capsular polysaccharide (CP) synthesis (cps) genes of the oral streptococci, Streptococcus anginosus. In this study, we investigate the effects of carbon dioxide (CO2), bicarbonate (HCO3-) and unsaturated fatty acids (UFAs) on CP synthesis of S. anginosus. We found that C...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering 2019-11, Vol.128 (5), p.511-517
Main Authors: Matsumoto, Yuko, Miyake, Katsuhide, Ozawa, Kento, Baba, Yasunori, Kusube, Takasei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We recently reported on the capsular polysaccharide (CP) synthesis (cps) genes of the oral streptococci, Streptococcus anginosus. In this study, we investigate the effects of carbon dioxide (CO2), bicarbonate (HCO3-) and unsaturated fatty acids (UFAs) on CP synthesis of S. anginosus. We found that CP production increased when bacteria were exposed to high concentrations of CO2. This increase was similarly observed in the presence of sodium bicarbonate (NaHCO3) under atmospheric condition. Since ectopic expression of carbonic anhydrase, which converts CO2 to HCO3-, eliminated the requirement for CO2 in CP production and growth of S. anginosus lacking this enzyme, it seemed that HCO3- is an essential factor for CP production. Furthermore, UFAs also stimulated the CP production. Promoter-reporter assay and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis confirmed that stimulation of CP production occurs at the transcription level. The results of the promoter assays suggest that the expression and stimulation of cps genes by HCO3- or UFAs require the cpsA gene, which is located in the first position of the cps operon. With respect to the relationship between HCO3−and UFAs, HCO3- may stimulate UFA synthesis pathway at transcription level. Therefore, it is possible that UFAs are definitive signals for the CP production in S. anginosus.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2019.04.010