Loading…
Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity
In this work, the biosynthesis of silver nanoparticles by Galega officinalis extract using AgNO 3 as a precursor was reported. The reaction parameters for the biosynthesis and efficiency in their antimicrobial control against Escherichia coli , Staphylococcus aureus and Pseudomonas syringae were de...
Saved in:
Published in: | World journal of microbiology & biotechnology 2019-06, Vol.35 (6), p.88-9, Article 88 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-347abb03ffa230c74608e58ca9059d306afb5660bae7eac86dad681111a6ccfd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-347abb03ffa230c74608e58ca9059d306afb5660bae7eac86dad681111a6ccfd3 |
container_end_page | 9 |
container_issue | 6 |
container_start_page | 88 |
container_title | World journal of microbiology & biotechnology |
container_volume | 35 |
creator | Manosalva, Nixson Tortella, Gonzalo Cristina Diez, María Schalchli, Heidi Seabra, Amedea B. Durán, Nelson Rubilar, Olga |
description | In this work, the biosynthesis of silver nanoparticles by
Galega officinalis
extract using AgNO
3
as a precursor was reported. The reaction parameters for the biosynthesis and efficiency in their antimicrobial control against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas syringae
were determined. For biosynthesis, a central composite design combined with response surface methodology was used to optimize the process parameters (pH, AgNO
3
and extract concentration), and the design was assessed through the size distribution, zeta potential and polydispersity index of the nanoparticles. The results demonstrated that at pH 11, 1.6 mM of AgNO
3
and 15% vv
−1
of
G. officinalis
extract were the optimal reaction parameters. Transmission electron microscope (TEM) images and X-ray diffraction (XRD) confirmed the formation of small spherical silver nanoparticles. Antimicrobial assays showed a high inhibitory effect against
E. coli
,
S. aureus
and
P. syringae
, and that effect was larger with silver nanoparticles of a smaller size (23 nm). This work demonstrates that
G. officinalis
extract is a feasible medium for the synthesis of silver nanoparticles and that the control of the reaction parameters can determine the nanoparticle characteristics and therefore their antimicrobial effectiveness.
Graphical abstract |
doi_str_mv | 10.1007/s11274-019-2664-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2232124791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230543799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-347abb03ffa230c74608e58ca9059d306afb5660bae7eac86dad681111a6ccfd3</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVwiMeTfIA3psGbbNopPVoaZWdM_ABDNslaqNWlREO3eiJpDPP31mT8AINrU4s695ZUl5BTChcUQH3LlDIlWqC6ZVKKln8gC9op3oJW7IgsQHe65VrzY3KS8xqgqjT_RI45pVwI3i3I-iYhxibvYvmLOeRm9k0O4wOmJto4b2wqwY2YvzfoPbryf_4CJ7SuhDk2lbMTFkzVIDY2ljAFl-Y-2LHZIw-h7D6Tj96OGb889SX5ff3j19Vte__z5u7q8r51AnRpuVC274F7bxkHp4SEFXYrZzV0euAgre87KaG3qOr6lRzsIFe0lpXO-YEvydeD7ybN_7aYi5lCdjiONuK8zYYxzigTStOKnr9B1_M2xfq6PQWd4Kpeb0nogao_yjmhN5sUJpt2hoLZB2EOQZgahNkHYXjVnD05b_sJhxfF8-UrwA5ArqP4B9Pr6vddHwEnFJUl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230543799</pqid></control><display><type>article</type><title>Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Manosalva, Nixson ; Tortella, Gonzalo ; Cristina Diez, María ; Schalchli, Heidi ; Seabra, Amedea B. ; Durán, Nelson ; Rubilar, Olga</creator><creatorcontrib>Manosalva, Nixson ; Tortella, Gonzalo ; Cristina Diez, María ; Schalchli, Heidi ; Seabra, Amedea B. ; Durán, Nelson ; Rubilar, Olga</creatorcontrib><description>In this work, the biosynthesis of silver nanoparticles by
Galega officinalis
extract using AgNO
3
as a precursor was reported. The reaction parameters for the biosynthesis and efficiency in their antimicrobial control against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas syringae
were determined. For biosynthesis, a central composite design combined with response surface methodology was used to optimize the process parameters (pH, AgNO
3
and extract concentration), and the design was assessed through the size distribution, zeta potential and polydispersity index of the nanoparticles. The results demonstrated that at pH 11, 1.6 mM of AgNO
3
and 15% vv
−1
of
G. officinalis
extract were the optimal reaction parameters. Transmission electron microscope (TEM) images and X-ray diffraction (XRD) confirmed the formation of small spherical silver nanoparticles. Antimicrobial assays showed a high inhibitory effect against
E. coli
,
S. aureus
and
P. syringae
, and that effect was larger with silver nanoparticles of a smaller size (23 nm). This work demonstrates that
G. officinalis
extract is a feasible medium for the synthesis of silver nanoparticles and that the control of the reaction parameters can determine the nanoparticle characteristics and therefore their antimicrobial effectiveness.
Graphical abstract</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-019-2664-3</identifier><identifier>PMID: 31134435</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; Applied Microbiology ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Chemical synthesis ; E coli ; Environmental Engineering/Biotechnology ; Escherichia coli ; Image transmission ; Life Sciences ; Microbiology ; Nanoparticles ; Optimization ; Original Paper ; Pathogens ; pH effects ; Polydispersity ; Process parameters ; Response surface methodology ; Silver ; Size distribution ; X-ray diffraction ; Zeta potential</subject><ispartof>World journal of microbiology & biotechnology, 2019-06, Vol.35 (6), p.88-9, Article 88</ispartof><rights>Springer Nature B.V. 2019</rights><rights>World Journal of Microbiology and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-347abb03ffa230c74608e58ca9059d306afb5660bae7eac86dad681111a6ccfd3</citedby><cites>FETCH-LOGICAL-c409t-347abb03ffa230c74608e58ca9059d306afb5660bae7eac86dad681111a6ccfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2230543799/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2230543799?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31134435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manosalva, Nixson</creatorcontrib><creatorcontrib>Tortella, Gonzalo</creatorcontrib><creatorcontrib>Cristina Diez, María</creatorcontrib><creatorcontrib>Schalchli, Heidi</creatorcontrib><creatorcontrib>Seabra, Amedea B.</creatorcontrib><creatorcontrib>Durán, Nelson</creatorcontrib><creatorcontrib>Rubilar, Olga</creatorcontrib><title>Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity</title><title>World journal of microbiology & biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>In this work, the biosynthesis of silver nanoparticles by
Galega officinalis
extract using AgNO
3
as a precursor was reported. The reaction parameters for the biosynthesis and efficiency in their antimicrobial control against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas syringae
were determined. For biosynthesis, a central composite design combined with response surface methodology was used to optimize the process parameters (pH, AgNO
3
and extract concentration), and the design was assessed through the size distribution, zeta potential and polydispersity index of the nanoparticles. The results demonstrated that at pH 11, 1.6 mM of AgNO
3
and 15% vv
−1
of
G. officinalis
extract were the optimal reaction parameters. Transmission electron microscope (TEM) images and X-ray diffraction (XRD) confirmed the formation of small spherical silver nanoparticles. Antimicrobial assays showed a high inhibitory effect against
E. coli
,
S. aureus
and
P. syringae
, and that effect was larger with silver nanoparticles of a smaller size (23 nm). This work demonstrates that
G. officinalis
extract is a feasible medium for the synthesis of silver nanoparticles and that the control of the reaction parameters can determine the nanoparticle characteristics and therefore their antimicrobial effectiveness.
Graphical abstract</description><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Chemical synthesis</subject><subject>E coli</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Escherichia coli</subject><subject>Image transmission</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Nanoparticles</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Pathogens</subject><subject>pH effects</subject><subject>Polydispersity</subject><subject>Process parameters</subject><subject>Response surface methodology</subject><subject>Silver</subject><subject>Size distribution</subject><subject>X-ray diffraction</subject><subject>Zeta potential</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kctqHDEQRUVwiMeTfIA3psGbbNopPVoaZWdM_ABDNslaqNWlREO3eiJpDPP31mT8AINrU4s695ZUl5BTChcUQH3LlDIlWqC6ZVKKln8gC9op3oJW7IgsQHe65VrzY3KS8xqgqjT_RI45pVwI3i3I-iYhxibvYvmLOeRm9k0O4wOmJto4b2wqwY2YvzfoPbryf_4CJ7SuhDk2lbMTFkzVIDY2ljAFl-Y-2LHZIw-h7D6Tj96OGb889SX5ff3j19Vte__z5u7q8r51AnRpuVC274F7bxkHp4SEFXYrZzV0euAgre87KaG3qOr6lRzsIFe0lpXO-YEvydeD7ybN_7aYi5lCdjiONuK8zYYxzigTStOKnr9B1_M2xfq6PQWd4Kpeb0nogao_yjmhN5sUJpt2hoLZB2EOQZgahNkHYXjVnD05b_sJhxfF8-UrwA5ArqP4B9Pr6vddHwEnFJUl</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Manosalva, Nixson</creator><creator>Tortella, Gonzalo</creator><creator>Cristina Diez, María</creator><creator>Schalchli, Heidi</creator><creator>Seabra, Amedea B.</creator><creator>Durán, Nelson</creator><creator>Rubilar, Olga</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190601</creationdate><title>Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity</title><author>Manosalva, Nixson ; Tortella, Gonzalo ; Cristina Diez, María ; Schalchli, Heidi ; Seabra, Amedea B. ; Durán, Nelson ; Rubilar, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-347abb03ffa230c74608e58ca9059d306afb5660bae7eac86dad681111a6ccfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Chemical synthesis</topic><topic>E coli</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Escherichia coli</topic><topic>Image transmission</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Nanoparticles</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Pathogens</topic><topic>pH effects</topic><topic>Polydispersity</topic><topic>Process parameters</topic><topic>Response surface methodology</topic><topic>Silver</topic><topic>Size distribution</topic><topic>X-ray diffraction</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manosalva, Nixson</creatorcontrib><creatorcontrib>Tortella, Gonzalo</creatorcontrib><creatorcontrib>Cristina Diez, María</creatorcontrib><creatorcontrib>Schalchli, Heidi</creatorcontrib><creatorcontrib>Seabra, Amedea B.</creatorcontrib><creatorcontrib>Durán, Nelson</creatorcontrib><creatorcontrib>Rubilar, Olga</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>World journal of microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manosalva, Nixson</au><au>Tortella, Gonzalo</au><au>Cristina Diez, María</au><au>Schalchli, Heidi</au><au>Seabra, Amedea B.</au><au>Durán, Nelson</au><au>Rubilar, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity</atitle><jtitle>World journal of microbiology & biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>88</spage><epage>9</epage><pages>88-9</pages><artnum>88</artnum><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>In this work, the biosynthesis of silver nanoparticles by
Galega officinalis
extract using AgNO
3
as a precursor was reported. The reaction parameters for the biosynthesis and efficiency in their antimicrobial control against
Escherichia coli
,
Staphylococcus aureus
and
Pseudomonas syringae
were determined. For biosynthesis, a central composite design combined with response surface methodology was used to optimize the process parameters (pH, AgNO
3
and extract concentration), and the design was assessed through the size distribution, zeta potential and polydispersity index of the nanoparticles. The results demonstrated that at pH 11, 1.6 mM of AgNO
3
and 15% vv
−1
of
G. officinalis
extract were the optimal reaction parameters. Transmission electron microscope (TEM) images and X-ray diffraction (XRD) confirmed the formation of small spherical silver nanoparticles. Antimicrobial assays showed a high inhibitory effect against
E. coli
,
S. aureus
and
P. syringae
, and that effect was larger with silver nanoparticles of a smaller size (23 nm). This work demonstrates that
G. officinalis
extract is a feasible medium for the synthesis of silver nanoparticles and that the control of the reaction parameters can determine the nanoparticle characteristics and therefore their antimicrobial effectiveness.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31134435</pmid><doi>10.1007/s11274-019-2664-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-3993 |
ispartof | World journal of microbiology & biotechnology, 2019-06, Vol.35 (6), p.88-9, Article 88 |
issn | 0959-3993 1573-0972 |
language | eng |
recordid | cdi_proquest_miscellaneous_2232124791 |
source | ABI/INFORM Global; Springer Nature |
subjects | Antiinfectives and antibacterials Antimicrobial activity Antimicrobial agents Applied Microbiology Biochemistry Biomedical and Life Sciences Biosynthesis Biotechnology Chemical synthesis E coli Environmental Engineering/Biotechnology Escherichia coli Image transmission Life Sciences Microbiology Nanoparticles Optimization Original Paper Pathogens pH effects Polydispersity Process parameters Response surface methodology Silver Size distribution X-ray diffraction Zeta potential |
title | Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20synthesis%20of%20silver%20nanoparticles:%20effect%20of%20synthesis%20reaction%20parameters%20on%20antimicrobial%20activity&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Manosalva,%20Nixson&rft.date=2019-06-01&rft.volume=35&rft.issue=6&rft.spage=88&rft.epage=9&rft.pages=88-9&rft.artnum=88&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-019-2664-3&rft_dat=%3Cproquest_cross%3E2230543799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-347abb03ffa230c74608e58ca9059d306afb5660bae7eac86dad681111a6ccfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2230543799&rft_id=info:pmid/31134435&rfr_iscdi=true |