Loading…
Classical and Quantum Liquids Induced by Quantum Fluctuations
Geometrically frustrated interactions may render classical ground states macroscopically degenerate. The connection between classical and quantum liquids and how the degeneracy is affected by quantum fluctuations is, however, not completely understood. We study a simple model of coupled quantum and...
Saved in:
Published in: | Physical review letters 2019-05, Vol.122 (19), p.197601-197601, Article 197601 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Geometrically frustrated interactions may render classical ground states macroscopically degenerate. The connection between classical and quantum liquids and how the degeneracy is affected by quantum fluctuations is, however, not completely understood. We study a simple model of coupled quantum and classical degrees of freedom, the so-called Falicov-Kimball model, on a triangular lattice and away from half-filling. For weak interactions the phase diagram features a charge disordered state down to zero temperature. We provide compelling evidence that this phase is a liquid and show that it is divided by a crossover line that terminates in a quantum critical point. Our results offer a new vantage point to address how quantum liquids can emerge from their classical counterparts. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.197601 |