Loading…
Complexity of Causal Order Structure in Distributed Quantum Information Processing: More Rounds of Classical Communication Reduce Entanglement Cost
We prove a trade-off relation between the entanglement cost and classical communication round complexity of a protocol in implementing a class of two-qubit unitary gates by two distant parties, a key subroutine in distributed quantum information processing. The task is analyzed in an information the...
Saved in:
Published in: | Physical review letters 2019-05, Vol.122 (19), p.190502-190502, Article 190502 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove a trade-off relation between the entanglement cost and classical communication round complexity of a protocol in implementing a class of two-qubit unitary gates by two distant parties, a key subroutine in distributed quantum information processing. The task is analyzed in an information theoretic scenario of asymptotically many input pairs with a small error that is required to vanish sufficiently quickly. The trade-off relation is shown by (i) one ebit of entanglement per pair is necessary for implementing the unitary by any two-round protocol, and (ii) the entanglement cost by a three-round protocol is strictly smaller than one ebit per pair. We also provide an example of bipartite unitary gates for which there is no such trade-off. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.122.190502 |