Loading…
Facile tailoring of Co-based spinel hierarchical hollow microspheres for highly efficient catalytic conversion of CO2
[Display omitted] High-performance and low-cost photocatalysts are of significance to artificial photosynthetic systems for converting of CO2 into CO and other value-added products. In this work, we developed a controllable and scalable self-templated approach to fabricate hierarchical Co-base spine...
Saved in:
Published in: | Journal of colloid and interface science 2019-09, Vol.552, p.476-484 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
High-performance and low-cost photocatalysts are of significance to artificial photosynthetic systems for converting of CO2 into CO and other value-added products. In this work, we developed a controllable and scalable self-templated approach to fabricate hierarchical Co-base spinel hollow microspheres for visible light-driven CO2 reduction with a Ru-based sensitizer. The hollow microspheres are assembled by ultrathin nanosheets using Ni-Co-hydroxides as the morphology-conserved precursor. A series of characterization techniques were conducted to investigate structural features of the prepared Co-base spinel hollow spheres. Owing to the integration of the specific microstructure, functional Ni/Co species and oxygen vacancies, Co-base spinel hollow spheres possess enhanced CO2 adsorption ability, more active sites, and efficient transfer and separation of photoexcited electrons. The high CO-evolving rate (27.7 μmol h−1) and selectivity (84.4%) manifest desirable performance of Co-base spinel hollow spheres for CO2 photocatalytic reduction. The findings suggest that such spinel-structured bimetallic oxides hierarchical hollow spheres, facilely synthesized via the proposed self-templated method, are efficient for photocatalytic CO2 reduction. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2019.05.054 |