Loading…

Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor

For the first time, a simple electrochemical co-deposition was utilized to synthesis the gold and zirconia nanocomposites modified graphene nanosheets on glassy carbon electrode (Au-ZrO2-GNs/GCE) for electrocatalytic analysis of methyl parathion (MP). According to Field-Emission Scanning Electron Mi...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2019-09, Vol.1072, p.25-34
Main Authors: Gao, Nan, He, Chaohui, Ma, Mingyu, Cai, Zhiwei, Zhou, Yang, Chang, Gang, Wang, Xianbao, He, Yunbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-44ebeffd4dc65c57c2e80be32ee6dc2aeae670a7410a060a7480585cef06e74b3
cites cdi_FETCH-LOGICAL-c424t-44ebeffd4dc65c57c2e80be32ee6dc2aeae670a7410a060a7480585cef06e74b3
container_end_page 34
container_issue
container_start_page 25
container_title Analytica chimica acta
container_volume 1072
creator Gao, Nan
He, Chaohui
Ma, Mingyu
Cai, Zhiwei
Zhou, Yang
Chang, Gang
Wang, Xianbao
He, Yunbin
description For the first time, a simple electrochemical co-deposition was utilized to synthesis the gold and zirconia nanocomposites modified graphene nanosheets on glassy carbon electrode (Au-ZrO2-GNs/GCE) for electrocatalytic analysis of methyl parathion (MP). According to Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM) and X-Ray Diffraction (XRD), the gold nanoparticles were uniformly distributed on the surface of graphene-based nanocomposite. The Au-ZrO2-GNs/GCE based sensor exhibited superior capacity for MP detection, ascribed to the strong affinity of zirconia towards the phosphoric group, as well as the high catalytic activity and good conductivity of Au-GNs. The best fabrication and work conditions were then obtained by systematically optimization of the electrodeposition process, pH value and enrichment time. Compared to the gold nanoparticles, zirconia or graphene modified electrodes, AuZrO2-GNs/GCE sensor displayed superior electro-catalytic response toward MP oxidation. The sensor response current of square wave voltammetry was highly linearly correlated with the MP concentrations range of 1–100 ng mL−1 and 100–2400 ng mL−1 with the detection limit of 1 ng mL−1. The Au-ZrO2-GNs/GCE nanocomposite sensor showed excellent accuracy and reproducibility for detection of MP in Chinese cabbage samples, providing a new method for efficient pesticide detection in practical applications. [Display omitted] •AuZrO2-GNs/GCE nanocomposite was synthesized via electrochemical co-deposition for the first time.•The nanocomposite was more sensitive for MP determination due to synergistic effect.•The sensor showed relatively wider linear range (1–100 ng mL−1 and 100–2400 ng mL−1).•The sensor can be practical application upon the excellent recovery results of Chinese cabbage.
doi_str_mv 10.1016/j.aca.2019.04.043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2233859484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267019304775</els_id><sourcerecordid>2233859484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-44ebeffd4dc65c57c2e80be32ee6dc2aeae670a7410a060a7480585cef06e74b3</originalsourceid><addsrcrecordid>eNp9kU1rHDEMhk1podu0P6A3Qy65zEb-mI-lpxCSNhDIJbn0YrwaTcfLjD2xvYHtr68321MOAYEkeF4h6WXsu4C1ANFc7tYW7VqC2KxBl1Af2Ep0raq0kvojWwGAqmTTwmf2JaVdaaUAvWL5ZiLMMeBIs0M7cQxVT0tILrvgeTr4PFJyiYeBX-2r3_FBVn-iXUbyxL31AcP8ShMfQuSW--DJ_z3MNjvkM-XxMPHFRpvH13nkU4hf2afBTom-_c9n7On25vH6V3X_8PPu-uq-Qi11rrSmLQ1Dr3tsaqxblNTBlpQkanqUliyVg2yrBVhojkUHdVcjDdBQq7fqjF2c5i4xPO8pZTO7hDRN1lPYJyOlUl290Z0u6PkbdBf20ZftCtVsVKehbQolThTGkFKkwSzRzTYejABz9MHsTPHBHH0woEuoovlx0lC59MVRNAkdeaTexfJ60wf3jvof1r2SkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269384076</pqid></control><display><type>article</type><title>Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Gao, Nan ; He, Chaohui ; Ma, Mingyu ; Cai, Zhiwei ; Zhou, Yang ; Chang, Gang ; Wang, Xianbao ; He, Yunbin</creator><creatorcontrib>Gao, Nan ; He, Chaohui ; Ma, Mingyu ; Cai, Zhiwei ; Zhou, Yang ; Chang, Gang ; Wang, Xianbao ; He, Yunbin</creatorcontrib><description>For the first time, a simple electrochemical co-deposition was utilized to synthesis the gold and zirconia nanocomposites modified graphene nanosheets on glassy carbon electrode (Au-ZrO2-GNs/GCE) for electrocatalytic analysis of methyl parathion (MP). According to Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM) and X-Ray Diffraction (XRD), the gold nanoparticles were uniformly distributed on the surface of graphene-based nanocomposite. The Au-ZrO2-GNs/GCE based sensor exhibited superior capacity for MP detection, ascribed to the strong affinity of zirconia towards the phosphoric group, as well as the high catalytic activity and good conductivity of Au-GNs. The best fabrication and work conditions were then obtained by systematically optimization of the electrodeposition process, pH value and enrichment time. Compared to the gold nanoparticles, zirconia or graphene modified electrodes, AuZrO2-GNs/GCE sensor displayed superior electro-catalytic response toward MP oxidation. The sensor response current of square wave voltammetry was highly linearly correlated with the MP concentrations range of 1–100 ng mL−1 and 100–2400 ng mL−1 with the detection limit of 1 ng mL−1. The Au-ZrO2-GNs/GCE nanocomposite sensor showed excellent accuracy and reproducibility for detection of MP in Chinese cabbage samples, providing a new method for efficient pesticide detection in practical applications. [Display omitted] •AuZrO2-GNs/GCE nanocomposite was synthesized via electrochemical co-deposition for the first time.•The nanocomposite was more sensitive for MP determination due to synergistic effect.•The sensor showed relatively wider linear range (1–100 ng mL−1 and 100–2400 ng mL−1).•The sensor can be practical application upon the excellent recovery results of Chinese cabbage.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2019.04.043</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Au nanoparticles ; Catalysis ; Catalytic activity ; Chinese cabbage ; Codeposition ; Deposition ; Electrochemical co-deposition ; Electrochemistry ; Electrodes ; Emission analysis ; Fabrication ; Glassy carbon ; Gold ; Graphene ; Insecticides ; Methyl parathion ; Microscopy ; Nanocomposites ; Nanoparticles ; Nonenzymatic sensor ; Optimization ; Oxidation ; Parathion ; Pesticides ; Scanning electron microscopy ; Sensors ; Square waves ; Synthesis ; X-ray diffraction ; Zirconia ; Zirconium dioxide</subject><ispartof>Analytica chimica acta, 2019-09, Vol.1072, p.25-34</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 23, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-44ebeffd4dc65c57c2e80be32ee6dc2aeae670a7410a060a7480585cef06e74b3</citedby><cites>FETCH-LOGICAL-c424t-44ebeffd4dc65c57c2e80be32ee6dc2aeae670a7410a060a7480585cef06e74b3</cites><orcidid>0000-0002-7179-4392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gao, Nan</creatorcontrib><creatorcontrib>He, Chaohui</creatorcontrib><creatorcontrib>Ma, Mingyu</creatorcontrib><creatorcontrib>Cai, Zhiwei</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Chang, Gang</creatorcontrib><creatorcontrib>Wang, Xianbao</creatorcontrib><creatorcontrib>He, Yunbin</creatorcontrib><title>Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor</title><title>Analytica chimica acta</title><description>For the first time, a simple electrochemical co-deposition was utilized to synthesis the gold and zirconia nanocomposites modified graphene nanosheets on glassy carbon electrode (Au-ZrO2-GNs/GCE) for electrocatalytic analysis of methyl parathion (MP). According to Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM) and X-Ray Diffraction (XRD), the gold nanoparticles were uniformly distributed on the surface of graphene-based nanocomposite. The Au-ZrO2-GNs/GCE based sensor exhibited superior capacity for MP detection, ascribed to the strong affinity of zirconia towards the phosphoric group, as well as the high catalytic activity and good conductivity of Au-GNs. The best fabrication and work conditions were then obtained by systematically optimization of the electrodeposition process, pH value and enrichment time. Compared to the gold nanoparticles, zirconia or graphene modified electrodes, AuZrO2-GNs/GCE sensor displayed superior electro-catalytic response toward MP oxidation. The sensor response current of square wave voltammetry was highly linearly correlated with the MP concentrations range of 1–100 ng mL−1 and 100–2400 ng mL−1 with the detection limit of 1 ng mL−1. The Au-ZrO2-GNs/GCE nanocomposite sensor showed excellent accuracy and reproducibility for detection of MP in Chinese cabbage samples, providing a new method for efficient pesticide detection in practical applications. [Display omitted] •AuZrO2-GNs/GCE nanocomposite was synthesized via electrochemical co-deposition for the first time.•The nanocomposite was more sensitive for MP determination due to synergistic effect.•The sensor showed relatively wider linear range (1–100 ng mL−1 and 100–2400 ng mL−1).•The sensor can be practical application upon the excellent recovery results of Chinese cabbage.</description><subject>Au nanoparticles</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chinese cabbage</subject><subject>Codeposition</subject><subject>Deposition</subject><subject>Electrochemical co-deposition</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Emission analysis</subject><subject>Fabrication</subject><subject>Glassy carbon</subject><subject>Gold</subject><subject>Graphene</subject><subject>Insecticides</subject><subject>Methyl parathion</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nonenzymatic sensor</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Parathion</subject><subject>Pesticides</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Square waves</subject><subject>Synthesis</subject><subject>X-ray diffraction</subject><subject>Zirconia</subject><subject>Zirconium dioxide</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHDEMhk1podu0P6A3Qy65zEb-mI-lpxCSNhDIJbn0YrwaTcfLjD2xvYHtr68321MOAYEkeF4h6WXsu4C1ANFc7tYW7VqC2KxBl1Af2Ep0raq0kvojWwGAqmTTwmf2JaVdaaUAvWL5ZiLMMeBIs0M7cQxVT0tILrvgeTr4PFJyiYeBX-2r3_FBVn-iXUbyxL31AcP8ShMfQuSW--DJ_z3MNjvkM-XxMPHFRpvH13nkU4hf2afBTom-_c9n7On25vH6V3X_8PPu-uq-Qi11rrSmLQ1Dr3tsaqxblNTBlpQkanqUliyVg2yrBVhojkUHdVcjDdBQq7fqjF2c5i4xPO8pZTO7hDRN1lPYJyOlUl290Z0u6PkbdBf20ZftCtVsVKehbQolThTGkFKkwSzRzTYejABz9MHsTPHBHH0woEuoovlx0lC59MVRNAkdeaTexfJ60wf3jvof1r2SkA</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Gao, Nan</creator><creator>He, Chaohui</creator><creator>Ma, Mingyu</creator><creator>Cai, Zhiwei</creator><creator>Zhou, Yang</creator><creator>Chang, Gang</creator><creator>Wang, Xianbao</creator><creator>He, Yunbin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7179-4392</orcidid></search><sort><creationdate>20190923</creationdate><title>Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor</title><author>Gao, Nan ; He, Chaohui ; Ma, Mingyu ; Cai, Zhiwei ; Zhou, Yang ; Chang, Gang ; Wang, Xianbao ; He, Yunbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-44ebeffd4dc65c57c2e80be32ee6dc2aeae670a7410a060a7480585cef06e74b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Au nanoparticles</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chinese cabbage</topic><topic>Codeposition</topic><topic>Deposition</topic><topic>Electrochemical co-deposition</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Emission analysis</topic><topic>Fabrication</topic><topic>Glassy carbon</topic><topic>Gold</topic><topic>Graphene</topic><topic>Insecticides</topic><topic>Methyl parathion</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nonenzymatic sensor</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Parathion</topic><topic>Pesticides</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Square waves</topic><topic>Synthesis</topic><topic>X-ray diffraction</topic><topic>Zirconia</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Nan</creatorcontrib><creatorcontrib>He, Chaohui</creatorcontrib><creatorcontrib>Ma, Mingyu</creatorcontrib><creatorcontrib>Cai, Zhiwei</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Chang, Gang</creatorcontrib><creatorcontrib>Wang, Xianbao</creatorcontrib><creatorcontrib>He, Yunbin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Nan</au><au>He, Chaohui</au><au>Ma, Mingyu</au><au>Cai, Zhiwei</au><au>Zhou, Yang</au><au>Chang, Gang</au><au>Wang, Xianbao</au><au>He, Yunbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor</atitle><jtitle>Analytica chimica acta</jtitle><date>2019-09-23</date><risdate>2019</risdate><volume>1072</volume><spage>25</spage><epage>34</epage><pages>25-34</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>For the first time, a simple electrochemical co-deposition was utilized to synthesis the gold and zirconia nanocomposites modified graphene nanosheets on glassy carbon electrode (Au-ZrO2-GNs/GCE) for electrocatalytic analysis of methyl parathion (MP). According to Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM) and X-Ray Diffraction (XRD), the gold nanoparticles were uniformly distributed on the surface of graphene-based nanocomposite. The Au-ZrO2-GNs/GCE based sensor exhibited superior capacity for MP detection, ascribed to the strong affinity of zirconia towards the phosphoric group, as well as the high catalytic activity and good conductivity of Au-GNs. The best fabrication and work conditions were then obtained by systematically optimization of the electrodeposition process, pH value and enrichment time. Compared to the gold nanoparticles, zirconia or graphene modified electrodes, AuZrO2-GNs/GCE sensor displayed superior electro-catalytic response toward MP oxidation. The sensor response current of square wave voltammetry was highly linearly correlated with the MP concentrations range of 1–100 ng mL−1 and 100–2400 ng mL−1 with the detection limit of 1 ng mL−1. The Au-ZrO2-GNs/GCE nanocomposite sensor showed excellent accuracy and reproducibility for detection of MP in Chinese cabbage samples, providing a new method for efficient pesticide detection in practical applications. [Display omitted] •AuZrO2-GNs/GCE nanocomposite was synthesized via electrochemical co-deposition for the first time.•The nanocomposite was more sensitive for MP determination due to synergistic effect.•The sensor showed relatively wider linear range (1–100 ng mL−1 and 100–2400 ng mL−1).•The sensor can be practical application upon the excellent recovery results of Chinese cabbage.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.aca.2019.04.043</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7179-4392</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2019-09, Vol.1072, p.25-34
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_2233859484
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Au nanoparticles
Catalysis
Catalytic activity
Chinese cabbage
Codeposition
Deposition
Electrochemical co-deposition
Electrochemistry
Electrodes
Emission analysis
Fabrication
Glassy carbon
Gold
Graphene
Insecticides
Methyl parathion
Microscopy
Nanocomposites
Nanoparticles
Nonenzymatic sensor
Optimization
Oxidation
Parathion
Pesticides
Scanning electron microscopy
Sensors
Square waves
Synthesis
X-ray diffraction
Zirconia
Zirconium dioxide
title Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20co-deposition%20synthesis%20of%20Au-ZrO2-graphene%20nanocomposite%20for%20a%20nonenzymatic%20methyl%20parathion%20sensor&rft.jtitle=Analytica%20chimica%20acta&rft.au=Gao,%20Nan&rft.date=2019-09-23&rft.volume=1072&rft.spage=25&rft.epage=34&rft.pages=25-34&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2019.04.043&rft_dat=%3Cproquest_cross%3E2233859484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-44ebeffd4dc65c57c2e80be32ee6dc2aeae670a7410a060a7480585cef06e74b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2269384076&rft_id=info:pmid/&rfr_iscdi=true