Loading…
Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater
In the advanced oxidation processes, using persulfate (PS) as a radical precursor for pollutant degradation in groundwater has received increasing attention. In this study, zeolite supported nZVI composites (Z/nZVI) were synthesized through an ion exchange and borohydride reduction method to investi...
Saved in:
Published in: | The Science of the total environment 2019-09, Vol.684, p.351-359 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the advanced oxidation processes, using persulfate (PS) as a radical precursor for pollutant degradation in groundwater has received increasing attention. In this study, zeolite supported nZVI composites (Z/nZVI) were synthesized through an ion exchange and borohydride reduction method to investigate their ability to activate PS for the TCE degradation. Based on preliminary screening of the PS activation by the Z/nZVI (PS-Z/nZVI) system in terms of TCE degradation, Z/nZVI composite with a zeolite to nZVI mass ratio of 1:1 (Z/nZVI (1)) was optimized as the best composition and chosen for further characterization and examination. Especially, for this PS-Z/nZVI system, PS concentration, solution matrix effects (i.e., solution pH, coexisting anions and natural organic matter) were studied. Characterization results revealed that the aggregation of nZVI particles was alleviated and they were good dispersed on the zeolite sheet with a large SSA (159.49 m2/g) compared to the unsupported nZVI (8.77 m2/g). The synthesized Z/nZVI (1) composite exhibited excellent activated ability towards PS (1.5 mM) and effectively degraded 98.8% of TCE at pH 7 within 120 min. The PS-Z/nZVI system was observed to operate effectively over a wide range of pH (i.e., 4–7) for TCE degradation. Moreover, the presence of nitrates (1 mM) and bicarbonates (10 mM) decreased the TCE degradation efficiency to 91.5% and 59.6%, respectively. Scavenger tests demonstrated that both sulfate and hydroxyl radicals participated in the TCE degradation. The ion chromatography analysis suggested the formation of oxalic acid and formic acid as the reaction intermediates during the TCE degradation process in the PS-Z/nZVI system.
[Display omitted]
•Zeolite supported nZVI were synthesized and alleviated the nZVI aggregation.•Zeolite supported nZVI (1:1) composites showed excellent ability for PS activation.•PS-Z/nZVI system showed high TCE degradation ability at pH 4 to 7.•High nitrate and bicarbonate concentrations caused inhibition in TCE degradation.•Both SO4− and OH contributed to the TCE degradation in the PS-Z/nZVI system. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.05.331 |