Loading…
Trajectory control of electron beams using high intensity permanent magnests for linac-adaptable convergent beam radiotherapy
Convergent beam radiotherapy, or CBRT, currently under development is based on the adaptation of a linear accelerator (linac) to a device which allows to dynamically curve the original trajectory of the electron beam so that it impacts upon a target. This produces a photon beam via Bremsstrahlung wh...
Saved in:
Published in: | Applied radiation and isotopes 2019-09, Vol.151, p.13-18 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Convergent beam radiotherapy, or CBRT, currently under development is based on the adaptation of a linear accelerator (linac) to a device which allows to dynamically curve the original trajectory of the electron beam so that it impacts upon a target. This produces a photon beam via Bremsstrahlung which converges on a predetermined focus point (isocenter). Adaptation of the RTHC device is only possible if it is sufficiently compact, as the device must be placed between the linac head exit and the gurney. This requires that new magnetic deflection devices be developed. This paper describes the theoretical and experimental development of controlled-deflection electron beam systems (at energies in MeV ranges) generated in a dual linear accelerator waveguide. A device which follows RTHC geometry is adapted for the system, using new magnetic deflector designs based on permanent neodymium magnets which reach magnetic field intensities in the order of Tesla. The methodology that was developed includes calculations of the radii of curvature with relativistic considerations for mono- and poly-energetic electrons. Deflection angles were calculated based on this theoretical foundation, using a program developed in MatLab® which shows the trajectory of electrons both under ideal conditions (uniform magnetic field) and real conditions (magnetic field defined through intensity distribution). Monte Carlo simulation subroutines were implemented in order to estimate the spectrum of electrons issuing from the linac as well as to directly determine the electron beam trajectory with magnetic deflectors present. Theoretical and simulated results were compared to experiments performed with a clinical linear accelerator, demonstrating correspondence between different methodologies and confirming the ability to achieve electron beam deflection levels necessary for implementation of convergent beam radiotherapy device. |
---|---|
ISSN: | 0969-8043 1872-9800 |
DOI: | 10.1016/j.apradiso.2019.05.032 |