Loading…
Neuroprotective Potential of Curcumin-Loaded Nanostructured Lipid Carrier in an Animal Model of Alzheimer's Disease: Behavioral and Biochemical Evidence
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and is caused by accumulation of amyloid-β (Aβ) peptide and is associated with neurological abnormalities in learning and memory. The protective role of curcumin on nerve cells, along with a potent antioxidant and fre...
Saved in:
Published in: | Journal of Alzheimer's disease 2019-01, Vol.69 (3), p.671-686 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and is caused by accumulation of amyloid-β (Aβ) peptide and is associated with neurological abnormalities in learning and memory. The protective role of curcumin on nerve cells, along with a potent antioxidant and free radical scavenging activity, has been widely studied. However, its low bioavailability and limited transport ability across the blood-brain barrier are two major drawbacks of its application in the treatment of different neurodegenerative diseases. The present study was designed to improve the effectiveness of curcumin in the treatment of Aβ-induced cognitive deficiencies in a rat model of AD by loading it into nanostructured lipid carriers (NLCs). The accumulation rate of curcumin (505.76±38.4 ng/g-1 h) in rat brain, as well as its serum levels, were significantly increased by using curcumin-loaded NLCs. The effective role of NLCs for brain delivery of curcumin was confirmed by reduced oxidative stress parameters (ROS formation, lipid peroxidation, and ADP/ATP ratio) in the hippocampal tissue and improvement of spatial memory. Also, histopathological studies revealed the potential of Cur-NLCs in decreasing the hallmarks of Aβ in AD in the animal model. The result of studying the neuroprotective potential of Cur-NLC in both pre-treatment and treatment modes showed that loading curcumin in NLCs is an effective strategy for increasing curcumin delivery to the brain and reducing Aβ-induced neurological abnormalities and memory defects and that it can be the basis for further studies in the area of AD prevention and treatment. |
---|---|
ISSN: | 1387-2877 1875-8908 |
DOI: | 10.3233/JAD-190083 |