Loading…

Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice

Background Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth...

Full description

Saved in:
Bibliographic Details
Published in:Pediatric research 2020-02, Vol.87 (3), p.450-455
Main Authors: Radford, Bethany N., Han, Victor K. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-44b4ead865f7fd97193c45a36d9197469dcdbb3c95565d16d646f96f5f2998383
cites cdi_FETCH-LOGICAL-c415t-44b4ead865f7fd97193c45a36d9197469dcdbb3c95565d16d646f96f5f2998383
container_end_page 455
container_issue 3
container_start_page 450
container_title Pediatric research
container_volume 87
creator Radford, Bethany N.
Han, Victor K. M.
description Background Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth restriction. This study aimed to examine hepatic expression changes in a maternal nutrient restriction (MNR) mouse model of IUGR to understand fetal adaptations that influence adult metabolism. Methods Liver samples of male offspring from MNR (70% of ad libitum starting at E6.5) or control pregnancies were obtained at E18.5 and differential expression was assessed by RNAseq and western blots. Results Forty-nine differentially expressed (FDR 
doi_str_mv 10.1038/s41390-019-0447-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2242816794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242816794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-44b4ead865f7fd97193c45a36d9197469dcdbb3c95565d16d646f96f5f2998383</originalsourceid><addsrcrecordid>eNp1kM1O3DAUhS3UCqZDH6CbylI3bELt-CfxEiGgSCOxgbXlsa-nRokz2MmozNPjdChISF3Z1vnOub4HoW-UnFPC2p-ZU6ZIRaiqCOdNtT9CCyoY-fv6hBaEMFoxpdoT9CXnR0IoFy0_RieM0lbwVi6QudoFB9ECHjwO0SYwGRz-_bwd_gSDc9hE04W4KRr2MJoOd2EHCfs09Lg3I6Si4ziNKUAccYJcbnYMQ5wdfbBwij5702X4-nou0cP11f3lr2p1d3N7ebGqLKdirDhfczCulcI33qmGKma5MEw6RVXDpXLWrdfMKiGkcFQ6yaVX0gtflwVZy5bo7JC7TcPTVP6h-5AtdJ2JMExZ1zWvWyobxQv64wP6OEzzIoViQrGmNCoLRQ-UTUPOCbzeptCb9Kwp0XP_-tC_LrSeG9f74vn-mjyte3Bvjn-FF6A-ALlIcQPpffT_U18Au_2Q-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359370196</pqid></control><display><type>article</type><title>Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice</title><source>Springer Link</source><creator>Radford, Bethany N. ; Han, Victor K. M.</creator><creatorcontrib>Radford, Bethany N. ; Han, Victor K. M.</creatorcontrib><description>Background Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth restriction. This study aimed to examine hepatic expression changes in a maternal nutrient restriction (MNR) mouse model of IUGR to understand fetal adaptations that influence adult metabolism. Methods Liver samples of male offspring from MNR (70% of ad libitum starting at E6.5) or control pregnancies were obtained at E18.5 and differential expression was assessed by RNAseq and western blots. Results Forty-nine differentially expressed (FDR &lt; 0.1) transcripts were enriched in hypoxia-inducible pathways including Fkbp5 (1.6-fold change), Ccng2 (1.5-fold change), Pfkfb3 (1.5-fold change), Kdm3a (1.2-fold change), Btg2 (1.6-fold change), Vhl (1.3-fold change), and Hif-3a (1.3-fold change) (FDR &lt; 0.1). Fkbp5, Pfkfb3, Kdm3a, and Hif-3a were confirmed by qPCR, but only HIF-2a (2.2-fold change, p  = 0.002) and HIF-3a (1.3 p  = 0.03) protein were significantly increased. Conclusion Although a moderate impact, these data support evidence of fetal adaptation to reduced nutrients by increased hypoxia signaling in the liver.</description><identifier>ISSN: 0031-3998</identifier><identifier>EISSN: 1530-0447</identifier><identifier>DOI: 10.1038/s41390-019-0447-z</identifier><identifier>PMID: 31185486</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adaptation, Physiological ; Animal Nutritional Physiological Phenomena ; Animals ; Animals, Newborn ; Basic Science Article ; Disease Models, Animal ; Female ; Fetal Growth Retardation - genetics ; Fetal Growth Retardation - metabolism ; Fetal Growth Retardation - physiopathology ; Fetal Hypoxia - genetics ; Fetal Hypoxia - metabolism ; Fetal Hypoxia - physiopathology ; Gene Expression Regulation, Developmental ; Gestational Age ; Hypoxia ; Liver ; Liver - growth &amp; development ; Liver - metabolism ; Male ; Maternal Nutritional Physiological Phenomena ; Medicine ; Medicine &amp; Public Health ; Mice ; Nutritional Status ; Pediatric Surgery ; Pediatrics ; Pregnancy ; Prenatal Exposure Delayed Effects ; Signal Transduction - genetics</subject><ispartof>Pediatric research, 2020-02, Vol.87 (3), p.450-455</ispartof><rights>International Pediatric Research Foundation, Inc 2019</rights><rights>International Pediatric Research Foundation, Inc 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-44b4ead865f7fd97193c45a36d9197469dcdbb3c95565d16d646f96f5f2998383</citedby><cites>FETCH-LOGICAL-c415t-44b4ead865f7fd97193c45a36d9197469dcdbb3c95565d16d646f96f5f2998383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31185486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radford, Bethany N.</creatorcontrib><creatorcontrib>Han, Victor K. M.</creatorcontrib><title>Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice</title><title>Pediatric research</title><addtitle>Pediatr Res</addtitle><addtitle>Pediatr Res</addtitle><description>Background Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth restriction. This study aimed to examine hepatic expression changes in a maternal nutrient restriction (MNR) mouse model of IUGR to understand fetal adaptations that influence adult metabolism. Methods Liver samples of male offspring from MNR (70% of ad libitum starting at E6.5) or control pregnancies were obtained at E18.5 and differential expression was assessed by RNAseq and western blots. Results Forty-nine differentially expressed (FDR &lt; 0.1) transcripts were enriched in hypoxia-inducible pathways including Fkbp5 (1.6-fold change), Ccng2 (1.5-fold change), Pfkfb3 (1.5-fold change), Kdm3a (1.2-fold change), Btg2 (1.6-fold change), Vhl (1.3-fold change), and Hif-3a (1.3-fold change) (FDR &lt; 0.1). Fkbp5, Pfkfb3, Kdm3a, and Hif-3a were confirmed by qPCR, but only HIF-2a (2.2-fold change, p  = 0.002) and HIF-3a (1.3 p  = 0.03) protein were significantly increased. Conclusion Although a moderate impact, these data support evidence of fetal adaptation to reduced nutrients by increased hypoxia signaling in the liver.</description><subject>Adaptation, Physiological</subject><subject>Animal Nutritional Physiological Phenomena</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Basic Science Article</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Fetal Growth Retardation - genetics</subject><subject>Fetal Growth Retardation - metabolism</subject><subject>Fetal Growth Retardation - physiopathology</subject><subject>Fetal Hypoxia - genetics</subject><subject>Fetal Hypoxia - metabolism</subject><subject>Fetal Hypoxia - physiopathology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gestational Age</subject><subject>Hypoxia</subject><subject>Liver</subject><subject>Liver - growth &amp; development</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Maternal Nutritional Physiological Phenomena</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Nutritional Status</subject><subject>Pediatric Surgery</subject><subject>Pediatrics</subject><subject>Pregnancy</subject><subject>Prenatal Exposure Delayed Effects</subject><subject>Signal Transduction - genetics</subject><issn>0031-3998</issn><issn>1530-0447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O3DAUhS3UCqZDH6CbylI3bELt-CfxEiGgSCOxgbXlsa-nRokz2MmozNPjdChISF3Z1vnOub4HoW-UnFPC2p-ZU6ZIRaiqCOdNtT9CCyoY-fv6hBaEMFoxpdoT9CXnR0IoFy0_RieM0lbwVi6QudoFB9ECHjwO0SYwGRz-_bwd_gSDc9hE04W4KRr2MJoOd2EHCfs09Lg3I6Si4ziNKUAccYJcbnYMQ5wdfbBwij5702X4-nou0cP11f3lr2p1d3N7ebGqLKdirDhfczCulcI33qmGKma5MEw6RVXDpXLWrdfMKiGkcFQ6yaVX0gtflwVZy5bo7JC7TcPTVP6h-5AtdJ2JMExZ1zWvWyobxQv64wP6OEzzIoViQrGmNCoLRQ-UTUPOCbzeptCb9Kwp0XP_-tC_LrSeG9f74vn-mjyte3Bvjn-FF6A-ALlIcQPpffT_U18Au_2Q-A</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Radford, Bethany N.</creator><creator>Han, Victor K. M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20200201</creationdate><title>Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice</title><author>Radford, Bethany N. ; Han, Victor K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-44b4ead865f7fd97193c45a36d9197469dcdbb3c95565d16d646f96f5f2998383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Physiological</topic><topic>Animal Nutritional Physiological Phenomena</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Basic Science Article</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Fetal Growth Retardation - genetics</topic><topic>Fetal Growth Retardation - metabolism</topic><topic>Fetal Growth Retardation - physiopathology</topic><topic>Fetal Hypoxia - genetics</topic><topic>Fetal Hypoxia - metabolism</topic><topic>Fetal Hypoxia - physiopathology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gestational Age</topic><topic>Hypoxia</topic><topic>Liver</topic><topic>Liver - growth &amp; development</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Maternal Nutritional Physiological Phenomena</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Nutritional Status</topic><topic>Pediatric Surgery</topic><topic>Pediatrics</topic><topic>Pregnancy</topic><topic>Prenatal Exposure Delayed Effects</topic><topic>Signal Transduction - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radford, Bethany N.</creatorcontrib><creatorcontrib>Han, Victor K. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Pediatric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radford, Bethany N.</au><au>Han, Victor K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice</atitle><jtitle>Pediatric research</jtitle><stitle>Pediatr Res</stitle><addtitle>Pediatr Res</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>87</volume><issue>3</issue><spage>450</spage><epage>455</epage><pages>450-455</pages><issn>0031-3998</issn><eissn>1530-0447</eissn><abstract>Background Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth restriction. This study aimed to examine hepatic expression changes in a maternal nutrient restriction (MNR) mouse model of IUGR to understand fetal adaptations that influence adult metabolism. Methods Liver samples of male offspring from MNR (70% of ad libitum starting at E6.5) or control pregnancies were obtained at E18.5 and differential expression was assessed by RNAseq and western blots. Results Forty-nine differentially expressed (FDR &lt; 0.1) transcripts were enriched in hypoxia-inducible pathways including Fkbp5 (1.6-fold change), Ccng2 (1.5-fold change), Pfkfb3 (1.5-fold change), Kdm3a (1.2-fold change), Btg2 (1.6-fold change), Vhl (1.3-fold change), and Hif-3a (1.3-fold change) (FDR &lt; 0.1). Fkbp5, Pfkfb3, Kdm3a, and Hif-3a were confirmed by qPCR, but only HIF-2a (2.2-fold change, p  = 0.002) and HIF-3a (1.3 p  = 0.03) protein were significantly increased. Conclusion Although a moderate impact, these data support evidence of fetal adaptation to reduced nutrients by increased hypoxia signaling in the liver.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31185486</pmid><doi>10.1038/s41390-019-0447-z</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3998
ispartof Pediatric research, 2020-02, Vol.87 (3), p.450-455
issn 0031-3998
1530-0447
language eng
recordid cdi_proquest_miscellaneous_2242816794
source Springer Link
subjects Adaptation, Physiological
Animal Nutritional Physiological Phenomena
Animals
Animals, Newborn
Basic Science Article
Disease Models, Animal
Female
Fetal Growth Retardation - genetics
Fetal Growth Retardation - metabolism
Fetal Growth Retardation - physiopathology
Fetal Hypoxia - genetics
Fetal Hypoxia - metabolism
Fetal Hypoxia - physiopathology
Gene Expression Regulation, Developmental
Gestational Age
Hypoxia
Liver
Liver - growth & development
Liver - metabolism
Male
Maternal Nutritional Physiological Phenomena
Medicine
Medicine & Public Health
Mice
Nutritional Status
Pediatric Surgery
Pediatrics
Pregnancy
Prenatal Exposure Delayed Effects
Signal Transduction - genetics
title Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20increased%20hypoxia%20signaling%20in%20fetal%20liver%20from%20maternal%20nutrient%20restriction%20in%20mice&rft.jtitle=Pediatric%20research&rft.au=Radford,%20Bethany%20N.&rft.date=2020-02-01&rft.volume=87&rft.issue=3&rft.spage=450&rft.epage=455&rft.pages=450-455&rft.issn=0031-3998&rft.eissn=1530-0447&rft_id=info:doi/10.1038/s41390-019-0447-z&rft_dat=%3Cproquest_cross%3E2242816794%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-44b4ead865f7fd97193c45a36d9197469dcdbb3c95565d16d646f96f5f2998383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2359370196&rft_id=info:pmid/31185486&rfr_iscdi=true