Loading…
Order–disorder transition in nano-rutile TiO2 anodes: a high capacity low-volume change Li-ion battery material
Nano-sized particles of rutile TiO2 is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order–disorder transition upon deep discharge. However, in the disordered state, the LixTiO2 material retains a high reversible ion-...
Saved in:
Published in: | Nanoscale 2019-07, Vol.11 (25), p.12347-12357 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 12357 |
container_issue | 25 |
container_start_page | 12347 |
container_title | Nanoscale |
container_volume | 11 |
creator | Christian Kolle Christensen Mohammad Aref Hasen Mamakhel Ananya Renuka Balakrishna Iversen, Bo Brummerstedt Yet-Ming Chiang Ravnsbæk, Dorthe Bomholdt |
description | Nano-sized particles of rutile TiO2 is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order–disorder transition upon deep discharge. However, in the disordered state, the LixTiO2 material retains a high reversible ion-storage capacity of >200 mA h g−1. Despite the promising properties of the material, the structural transition and evolution during the repeated battery operation has so far been studied only by diffraction-based methods, which only provide insight into the part that retains some long-range order. Here, we utilize a combination of ex situ and operando total scattering with pair distribution function analysis and transmission electron microscopy to investigate the atomic-scale structures of the disordered LixTiO2 forming upon the discharge of nano-rutile TiO2 as well as to elucidate the phase behavior in the material during the repeated charge–discharge process. Our investigation reveals that nano-rutile upon Li-intercalation transforms into a composite of ∼5 nm domains of a layered LixTiO2 α-NaFeO2-type structure with ∼1 nm LixTiO2 grain boundaries with a columbite-like structural motif. During repeated charge–discharge cycling, the structure of this composite is retained and stores Li through a complete solid–solution transition with a remarkably small volume change of only 1 vol%. |
doi_str_mv | 10.1039/c9nr01228a |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2243495270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243495270</sourcerecordid><originalsourceid>FETCH-LOGICAL-g357t-60d9dd2f0de66db71ddf1397d392b8fceb6e25e34a86df25d97ab1b0c3bfb33f3</originalsourceid><addsrcrecordid>eNpdjs1KAzEYRYMoWKsbnyDgxs1okm8madxJ8Q8Guqnrkkwybco0aZOM0p3v4Bv6JE5RXLi658LhchG6pOSGEpC3jfSRUMYm6giNGClJASDY8R_z8hSdpbQmhEvgMEK7WTQ2fn18GpfCAXGOyieXXfDYeeyVD0Xss-ssnrsZw0M3Nt1hhVduucKN2qrG5T3uwnvxFrp-Y3GzUn5pce2Kw4hWOdu4xxs1hFPdOTppVZfsxW-O0evjw3z6XNSzp5fpfV0soRK54MRIY1hLjOXcaEGNaSlIYUAyPWkbq7lllYVSTbhpWWWkUJpq0oBuNUALY3T9s7uNYdfblBcblxrbdcrb0KcFYyWUsmKCDOrVP3Ud-uiHdwdLcEFLoPANNZRsdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247671431</pqid></control><display><type>article</type><title>Order–disorder transition in nano-rutile TiO2 anodes: a high capacity low-volume change Li-ion battery material</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Christian Kolle Christensen ; Mohammad Aref Hasen Mamakhel ; Ananya Renuka Balakrishna ; Iversen, Bo Brummerstedt ; Yet-Ming Chiang ; Ravnsbæk, Dorthe Bomholdt</creator><creatorcontrib>Christian Kolle Christensen ; Mohammad Aref Hasen Mamakhel ; Ananya Renuka Balakrishna ; Iversen, Bo Brummerstedt ; Yet-Ming Chiang ; Ravnsbæk, Dorthe Bomholdt</creatorcontrib><description>Nano-sized particles of rutile TiO2 is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order–disorder transition upon deep discharge. However, in the disordered state, the LixTiO2 material retains a high reversible ion-storage capacity of >200 mA h g−1. Despite the promising properties of the material, the structural transition and evolution during the repeated battery operation has so far been studied only by diffraction-based methods, which only provide insight into the part that retains some long-range order. Here, we utilize a combination of ex situ and operando total scattering with pair distribution function analysis and transmission electron microscopy to investigate the atomic-scale structures of the disordered LixTiO2 forming upon the discharge of nano-rutile TiO2 as well as to elucidate the phase behavior in the material during the repeated charge–discharge process. Our investigation reveals that nano-rutile upon Li-intercalation transforms into a composite of ∼5 nm domains of a layered LixTiO2 α-NaFeO2-type structure with ∼1 nm LixTiO2 grain boundaries with a columbite-like structural motif. During repeated charge–discharge cycling, the structure of this composite is retained and stores Li through a complete solid–solution transition with a remarkably small volume change of only 1 vol%.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr01228a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Charge materials ; Discharge ; Distribution functions ; Domains ; Fracture mechanics ; Function analysis ; Grain boundaries ; Lithium-ion batteries ; Long range order ; Nanoparticles ; Organic chemistry ; Raman spectra ; Rechargeable batteries ; Rutile ; Stacking sequence (composite materials) ; Storage capacity ; Titanium dioxide ; Transmission electron microscopy</subject><ispartof>Nanoscale, 2019-07, Vol.11 (25), p.12347-12357</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Christian Kolle Christensen</creatorcontrib><creatorcontrib>Mohammad Aref Hasen Mamakhel</creatorcontrib><creatorcontrib>Ananya Renuka Balakrishna</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><creatorcontrib>Yet-Ming Chiang</creatorcontrib><creatorcontrib>Ravnsbæk, Dorthe Bomholdt</creatorcontrib><title>Order–disorder transition in nano-rutile TiO2 anodes: a high capacity low-volume change Li-ion battery material</title><title>Nanoscale</title><description>Nano-sized particles of rutile TiO2 is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order–disorder transition upon deep discharge. However, in the disordered state, the LixTiO2 material retains a high reversible ion-storage capacity of >200 mA h g−1. Despite the promising properties of the material, the structural transition and evolution during the repeated battery operation has so far been studied only by diffraction-based methods, which only provide insight into the part that retains some long-range order. Here, we utilize a combination of ex situ and operando total scattering with pair distribution function analysis and transmission electron microscopy to investigate the atomic-scale structures of the disordered LixTiO2 forming upon the discharge of nano-rutile TiO2 as well as to elucidate the phase behavior in the material during the repeated charge–discharge process. Our investigation reveals that nano-rutile upon Li-intercalation transforms into a composite of ∼5 nm domains of a layered LixTiO2 α-NaFeO2-type structure with ∼1 nm LixTiO2 grain boundaries with a columbite-like structural motif. During repeated charge–discharge cycling, the structure of this composite is retained and stores Li through a complete solid–solution transition with a remarkably small volume change of only 1 vol%.</description><subject>Anodes</subject><subject>Charge materials</subject><subject>Discharge</subject><subject>Distribution functions</subject><subject>Domains</subject><subject>Fracture mechanics</subject><subject>Function analysis</subject><subject>Grain boundaries</subject><subject>Lithium-ion batteries</subject><subject>Long range order</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Raman spectra</subject><subject>Rechargeable batteries</subject><subject>Rutile</subject><subject>Stacking sequence (composite materials)</subject><subject>Storage capacity</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdjs1KAzEYRYMoWKsbnyDgxs1okm8madxJ8Q8Guqnrkkwybco0aZOM0p3v4Bv6JE5RXLi658LhchG6pOSGEpC3jfSRUMYm6giNGClJASDY8R_z8hSdpbQmhEvgMEK7WTQ2fn18GpfCAXGOyieXXfDYeeyVD0Xss-ssnrsZw0M3Nt1hhVduucKN2qrG5T3uwnvxFrp-Y3GzUn5pce2Kw4hWOdu4xxs1hFPdOTppVZfsxW-O0evjw3z6XNSzp5fpfV0soRK54MRIY1hLjOXcaEGNaSlIYUAyPWkbq7lllYVSTbhpWWWkUJpq0oBuNUALY3T9s7uNYdfblBcblxrbdcrb0KcFYyWUsmKCDOrVP3Ud-uiHdwdLcEFLoPANNZRsdw</recordid><startdate>20190707</startdate><enddate>20190707</enddate><creator>Christian Kolle Christensen</creator><creator>Mohammad Aref Hasen Mamakhel</creator><creator>Ananya Renuka Balakrishna</creator><creator>Iversen, Bo Brummerstedt</creator><creator>Yet-Ming Chiang</creator><creator>Ravnsbæk, Dorthe Bomholdt</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190707</creationdate><title>Order–disorder transition in nano-rutile TiO2 anodes: a high capacity low-volume change Li-ion battery material</title><author>Christian Kolle Christensen ; Mohammad Aref Hasen Mamakhel ; Ananya Renuka Balakrishna ; Iversen, Bo Brummerstedt ; Yet-Ming Chiang ; Ravnsbæk, Dorthe Bomholdt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g357t-60d9dd2f0de66db71ddf1397d392b8fceb6e25e34a86df25d97ab1b0c3bfb33f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Charge materials</topic><topic>Discharge</topic><topic>Distribution functions</topic><topic>Domains</topic><topic>Fracture mechanics</topic><topic>Function analysis</topic><topic>Grain boundaries</topic><topic>Lithium-ion batteries</topic><topic>Long range order</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Raman spectra</topic><topic>Rechargeable batteries</topic><topic>Rutile</topic><topic>Stacking sequence (composite materials)</topic><topic>Storage capacity</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christian Kolle Christensen</creatorcontrib><creatorcontrib>Mohammad Aref Hasen Mamakhel</creatorcontrib><creatorcontrib>Ananya Renuka Balakrishna</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><creatorcontrib>Yet-Ming Chiang</creatorcontrib><creatorcontrib>Ravnsbæk, Dorthe Bomholdt</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christian Kolle Christensen</au><au>Mohammad Aref Hasen Mamakhel</au><au>Ananya Renuka Balakrishna</au><au>Iversen, Bo Brummerstedt</au><au>Yet-Ming Chiang</au><au>Ravnsbæk, Dorthe Bomholdt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order–disorder transition in nano-rutile TiO2 anodes: a high capacity low-volume change Li-ion battery material</atitle><jtitle>Nanoscale</jtitle><date>2019-07-07</date><risdate>2019</risdate><volume>11</volume><issue>25</issue><spage>12347</spage><epage>12357</epage><pages>12347-12357</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Nano-sized particles of rutile TiO2 is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order–disorder transition upon deep discharge. However, in the disordered state, the LixTiO2 material retains a high reversible ion-storage capacity of >200 mA h g−1. Despite the promising properties of the material, the structural transition and evolution during the repeated battery operation has so far been studied only by diffraction-based methods, which only provide insight into the part that retains some long-range order. Here, we utilize a combination of ex situ and operando total scattering with pair distribution function analysis and transmission electron microscopy to investigate the atomic-scale structures of the disordered LixTiO2 forming upon the discharge of nano-rutile TiO2 as well as to elucidate the phase behavior in the material during the repeated charge–discharge process. Our investigation reveals that nano-rutile upon Li-intercalation transforms into a composite of ∼5 nm domains of a layered LixTiO2 α-NaFeO2-type structure with ∼1 nm LixTiO2 grain boundaries with a columbite-like structural motif. During repeated charge–discharge cycling, the structure of this composite is retained and stores Li through a complete solid–solution transition with a remarkably small volume change of only 1 vol%.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9nr01228a</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-07, Vol.11 (25), p.12347-12357 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2243495270 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Anodes Charge materials Discharge Distribution functions Domains Fracture mechanics Function analysis Grain boundaries Lithium-ion batteries Long range order Nanoparticles Organic chemistry Raman spectra Rechargeable batteries Rutile Stacking sequence (composite materials) Storage capacity Titanium dioxide Transmission electron microscopy |
title | Order–disorder transition in nano-rutile TiO2 anodes: a high capacity low-volume change Li-ion battery material |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%E2%80%93disorder%20transition%20in%20nano-rutile%20TiO2%20anodes:%20a%20high%20capacity%20low-volume%20change%20Li-ion%20battery%20material&rft.jtitle=Nanoscale&rft.au=Christian%20Kolle%20Christensen&rft.date=2019-07-07&rft.volume=11&rft.issue=25&rft.spage=12347&rft.epage=12357&rft.pages=12347-12357&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr01228a&rft_dat=%3Cproquest%3E2243495270%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g357t-60d9dd2f0de66db71ddf1397d392b8fceb6e25e34a86df25d97ab1b0c3bfb33f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2247671431&rft_id=info:pmid/&rfr_iscdi=true |