Loading…

Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels

•Entrapment of cells in low-sodium hydrogel lenses maintained growth and photosynthetic activity.•Particle size reduction increases light supply, but maintains the specific growth rate in the silica hydrogel lenses.•Elevated biomass loading of gels leads to increased photosynthetic growth.•Proof-of-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2019-08, Vol.302, p.58-66
Main Authors: Homburg, Sarah Vanessa, Kruse, Olaf, Patel, Anant V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-1e0c894fc465ef27dacc78028b30880db8581a6adac83d3ebe113762480a0ea93
cites cdi_FETCH-LOGICAL-c402t-1e0c894fc465ef27dacc78028b30880db8581a6adac83d3ebe113762480a0ea93
container_end_page 66
container_issue
container_start_page 58
container_title Journal of biotechnology
container_volume 302
creator Homburg, Sarah Vanessa
Kruse, Olaf
Patel, Anant V.
description •Entrapment of cells in low-sodium hydrogel lenses maintained growth and photosynthetic activity.•Particle size reduction increases light supply, but maintains the specific growth rate in the silica hydrogel lenses.•Elevated biomass loading of gels leads to increased photosynthetic growth.•Proof-of-concept revealed hydrogen production by cells entrapped in low-sodium silica lenses. Entrapment of microalgae in silica hydrogels enables the application as biocatalysts in continuous production of secreted products. Despite a mitigation of substrate and product diffusion limitations by lens-shaped particles, there are no reports on light supply and limitation. This study investigated the impact of hydrogel structure, particle size and biomass loading on the behaviour of the microalga Chlamydomonas reinhardtii entrapped in lens-shaped silica particles. Entrapment in tetraethyl orthosilicate and tetra(n-propylamino)silane based hydrogels reduced the growth rate by 30% and 23%, respectively. In contrast, cells entrapped in sodium silicate based hydrogels displayed a growth rate similar to free cells and cells entrapped in calcium alginate (1.13 d−1), indicating a suitable biocompatibility. Reduction of lens height by 26% maintained the growth rate in silica hydrogel. A fourfold increase in biomass loading reduced the growth rate by 20% and elevated the yield coefficient by 211%, indicating the impact of biomass loading on light and nutrient supply on photosynthetic growth. Finally, hydrogen production was observed by entrapped cells. The results of this work will pave the way for robust biocatalytic processes where photosynthetically active cells are protected against harmful mechanical and biological influences.
doi_str_mv 10.1016/j.jbiotec.2019.06.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2244130876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165619304882</els_id><sourcerecordid>2244130876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1e0c894fc465ef27dacc78028b30880db8581a6adac83d3ebe113762480a0ea93</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi0EotvCI4B85JJ0nDiOc0JoVdpKlXopZ8uxJ8SrxA62tyhvT1a7cOU0mtH3z2g-Qj4xKBkwcXsoD70LGU1ZAetKECVA94bsmGzrgktRvyW7jZMFE424ItcpHQCAdw17T65qVjHBudgRdx_D7zxS7S1dxpBDWn0eMTtDtcnu1eWVhoHux0nPqw1z8DrRiM6POtrsHEWfo14WtNR5OqFPRRr1qU1uckbTcbUx_MQpfSDvBj0l_HipN-TH97uX_UPx9Hz_uP_2VBgOVS4YgpEdHwwXDQ5Va7UxrYRK9jVICbaXjWRa6G0ua1tjj4zVrai4BA2ou_qGfDnvXWL4dcSU1eySwWnSHsMxqarinG27WrGhzRk1MaQUcVBLdLOOq2KgTpbVQV0sq5NlBUJtlrfc58uJYz-j_Zf6q3UDvp6B7W98dRhVMg69QesimqxscP858Qfl4pMS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244130876</pqid></control><display><type>article</type><title>Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels</title><source>ScienceDirect Freedom Collection</source><creator>Homburg, Sarah Vanessa ; Kruse, Olaf ; Patel, Anant V.</creator><creatorcontrib>Homburg, Sarah Vanessa ; Kruse, Olaf ; Patel, Anant V.</creatorcontrib><description>•Entrapment of cells in low-sodium hydrogel lenses maintained growth and photosynthetic activity.•Particle size reduction increases light supply, but maintains the specific growth rate in the silica hydrogel lenses.•Elevated biomass loading of gels leads to increased photosynthetic growth.•Proof-of-concept revealed hydrogen production by cells entrapped in low-sodium silica lenses. Entrapment of microalgae in silica hydrogels enables the application as biocatalysts in continuous production of secreted products. Despite a mitigation of substrate and product diffusion limitations by lens-shaped particles, there are no reports on light supply and limitation. This study investigated the impact of hydrogel structure, particle size and biomass loading on the behaviour of the microalga Chlamydomonas reinhardtii entrapped in lens-shaped silica particles. Entrapment in tetraethyl orthosilicate and tetra(n-propylamino)silane based hydrogels reduced the growth rate by 30% and 23%, respectively. In contrast, cells entrapped in sodium silicate based hydrogels displayed a growth rate similar to free cells and cells entrapped in calcium alginate (1.13 d−1), indicating a suitable biocompatibility. Reduction of lens height by 26% maintained the growth rate in silica hydrogel. A fourfold increase in biomass loading reduced the growth rate by 20% and elevated the yield coefficient by 211%, indicating the impact of biomass loading on light and nutrient supply on photosynthetic growth. Finally, hydrogen production was observed by entrapped cells. The results of this work will pave the way for robust biocatalytic processes where photosynthetically active cells are protected against harmful mechanical and biological influences.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2019.06.009</identifier><identifier>PMID: 31216446</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chlamydomonas ; Chlamydomonas reinhardtii - growth &amp; development ; Chlamydomonas reinhardtii - metabolism ; Entrapment ; Hydrogels - chemistry ; Immobilisation ; Microalgae ; Microalgae - metabolism ; Microalgae - physiology ; Photosynthesis - physiology ; Silica ; Silicon Dioxide ; Sol-gel</subject><ispartof>Journal of biotechnology, 2019-08, Vol.302, p.58-66</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1e0c894fc465ef27dacc78028b30880db8581a6adac83d3ebe113762480a0ea93</citedby><cites>FETCH-LOGICAL-c402t-1e0c894fc465ef27dacc78028b30880db8581a6adac83d3ebe113762480a0ea93</cites><orcidid>0000-0003-1771-407X ; 0000-0002-0358-8554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31216446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Homburg, Sarah Vanessa</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><creatorcontrib>Patel, Anant V.</creatorcontrib><title>Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>•Entrapment of cells in low-sodium hydrogel lenses maintained growth and photosynthetic activity.•Particle size reduction increases light supply, but maintains the specific growth rate in the silica hydrogel lenses.•Elevated biomass loading of gels leads to increased photosynthetic growth.•Proof-of-concept revealed hydrogen production by cells entrapped in low-sodium silica lenses. Entrapment of microalgae in silica hydrogels enables the application as biocatalysts in continuous production of secreted products. Despite a mitigation of substrate and product diffusion limitations by lens-shaped particles, there are no reports on light supply and limitation. This study investigated the impact of hydrogel structure, particle size and biomass loading on the behaviour of the microalga Chlamydomonas reinhardtii entrapped in lens-shaped silica particles. Entrapment in tetraethyl orthosilicate and tetra(n-propylamino)silane based hydrogels reduced the growth rate by 30% and 23%, respectively. In contrast, cells entrapped in sodium silicate based hydrogels displayed a growth rate similar to free cells and cells entrapped in calcium alginate (1.13 d−1), indicating a suitable biocompatibility. Reduction of lens height by 26% maintained the growth rate in silica hydrogel. A fourfold increase in biomass loading reduced the growth rate by 20% and elevated the yield coefficient by 211%, indicating the impact of biomass loading on light and nutrient supply on photosynthetic growth. Finally, hydrogen production was observed by entrapped cells. The results of this work will pave the way for robust biocatalytic processes where photosynthetically active cells are protected against harmful mechanical and biological influences.</description><subject>Chlamydomonas</subject><subject>Chlamydomonas reinhardtii - growth &amp; development</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Entrapment</subject><subject>Hydrogels - chemistry</subject><subject>Immobilisation</subject><subject>Microalgae</subject><subject>Microalgae - metabolism</subject><subject>Microalgae - physiology</subject><subject>Photosynthesis - physiology</subject><subject>Silica</subject><subject>Silicon Dioxide</subject><subject>Sol-gel</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi0EotvCI4B85JJ0nDiOc0JoVdpKlXopZ8uxJ8SrxA62tyhvT1a7cOU0mtH3z2g-Qj4xKBkwcXsoD70LGU1ZAetKECVA94bsmGzrgktRvyW7jZMFE424ItcpHQCAdw17T65qVjHBudgRdx_D7zxS7S1dxpBDWn0eMTtDtcnu1eWVhoHux0nPqw1z8DrRiM6POtrsHEWfo14WtNR5OqFPRRr1qU1uckbTcbUx_MQpfSDvBj0l_HipN-TH97uX_UPx9Hz_uP_2VBgOVS4YgpEdHwwXDQ5Va7UxrYRK9jVICbaXjWRa6G0ua1tjj4zVrai4BA2ou_qGfDnvXWL4dcSU1eySwWnSHsMxqarinG27WrGhzRk1MaQUcVBLdLOOq2KgTpbVQV0sq5NlBUJtlrfc58uJYz-j_Zf6q3UDvp6B7W98dRhVMg69QesimqxscP858Qfl4pMS</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Homburg, Sarah Vanessa</creator><creator>Kruse, Olaf</creator><creator>Patel, Anant V.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1771-407X</orcidid><orcidid>https://orcid.org/0000-0002-0358-8554</orcidid></search><sort><creationdate>20190820</creationdate><title>Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels</title><author>Homburg, Sarah Vanessa ; Kruse, Olaf ; Patel, Anant V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1e0c894fc465ef27dacc78028b30880db8581a6adac83d3ebe113762480a0ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chlamydomonas</topic><topic>Chlamydomonas reinhardtii - growth &amp; development</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Entrapment</topic><topic>Hydrogels - chemistry</topic><topic>Immobilisation</topic><topic>Microalgae</topic><topic>Microalgae - metabolism</topic><topic>Microalgae - physiology</topic><topic>Photosynthesis - physiology</topic><topic>Silica</topic><topic>Silicon Dioxide</topic><topic>Sol-gel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homburg, Sarah Vanessa</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><creatorcontrib>Patel, Anant V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homburg, Sarah Vanessa</au><au>Kruse, Olaf</au><au>Patel, Anant V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>302</volume><spage>58</spage><epage>66</epage><pages>58-66</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><abstract>•Entrapment of cells in low-sodium hydrogel lenses maintained growth and photosynthetic activity.•Particle size reduction increases light supply, but maintains the specific growth rate in the silica hydrogel lenses.•Elevated biomass loading of gels leads to increased photosynthetic growth.•Proof-of-concept revealed hydrogen production by cells entrapped in low-sodium silica lenses. Entrapment of microalgae in silica hydrogels enables the application as biocatalysts in continuous production of secreted products. Despite a mitigation of substrate and product diffusion limitations by lens-shaped particles, there are no reports on light supply and limitation. This study investigated the impact of hydrogel structure, particle size and biomass loading on the behaviour of the microalga Chlamydomonas reinhardtii entrapped in lens-shaped silica particles. Entrapment in tetraethyl orthosilicate and tetra(n-propylamino)silane based hydrogels reduced the growth rate by 30% and 23%, respectively. In contrast, cells entrapped in sodium silicate based hydrogels displayed a growth rate similar to free cells and cells entrapped in calcium alginate (1.13 d−1), indicating a suitable biocompatibility. Reduction of lens height by 26% maintained the growth rate in silica hydrogel. A fourfold increase in biomass loading reduced the growth rate by 20% and elevated the yield coefficient by 211%, indicating the impact of biomass loading on light and nutrient supply on photosynthetic growth. Finally, hydrogen production was observed by entrapped cells. The results of this work will pave the way for robust biocatalytic processes where photosynthetically active cells are protected against harmful mechanical and biological influences.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31216446</pmid><doi>10.1016/j.jbiotec.2019.06.009</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1771-407X</orcidid><orcidid>https://orcid.org/0000-0002-0358-8554</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 2019-08, Vol.302, p.58-66
issn 0168-1656
1873-4863
language eng
recordid cdi_proquest_miscellaneous_2244130876
source ScienceDirect Freedom Collection
subjects Chlamydomonas
Chlamydomonas reinhardtii - growth & development
Chlamydomonas reinhardtii - metabolism
Entrapment
Hydrogels - chemistry
Immobilisation
Microalgae
Microalgae - metabolism
Microalgae - physiology
Photosynthesis - physiology
Silica
Silicon Dioxide
Sol-gel
title Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20photosynthetic%20activity%20of%20Chlamydomonas%20reinhardtii%20entrapped%20in%20lens-shaped%20silica%20hydrogels&rft.jtitle=Journal%20of%20biotechnology&rft.au=Homburg,%20Sarah%20Vanessa&rft.date=2019-08-20&rft.volume=302&rft.spage=58&rft.epage=66&rft.pages=58-66&rft.issn=0168-1656&rft.eissn=1873-4863&rft_id=info:doi/10.1016/j.jbiotec.2019.06.009&rft_dat=%3Cproquest_cross%3E2244130876%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-1e0c894fc465ef27dacc78028b30880db8581a6adac83d3ebe113762480a0ea93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244130876&rft_id=info:pmid/31216446&rfr_iscdi=true