Loading…

Optimized block-implicit relaxation

A new relaxation method, block-implicit relaxation (BIR), which is applicable to partial difference equations with mesh varying coefficients and irregular boundaries, is compared with the less general Wachspress-optimized ADI method in solving the Poisson-Dirichlet problem on a rectangle. BIR consis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 1975-01, Vol.18 (4), p.421-439
Main Authors: Dietrich, D., McDonald, B.E., Warn-Varnas, A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-42e60c351b5490c60474f3fd333e62d694f1be3034d64873208e8776198d82ba3
cites cdi_FETCH-LOGICAL-c337t-42e60c351b5490c60474f3fd333e62d694f1be3034d64873208e8776198d82ba3
container_end_page 439
container_issue 4
container_start_page 421
container_title Journal of computational physics
container_volume 18
creator Dietrich, D.
McDonald, B.E.
Warn-Varnas, A.
description A new relaxation method, block-implicit relaxation (BIR), which is applicable to partial difference equations with mesh varying coefficients and irregular boundaries, is compared with the less general Wachspress-optimized ADI method in solving the Poisson-Dirichlet problem on a rectangle. BIR consists of dividing a large computational mesh into several small meshes, and solving the difference equation exactly in each submesh interior. Residuals on the submesh boundaries are reduced by an iterative relaxation scheme. BIR is found superior for all but the largest forcing function scales. The large-scale convergence is accelerated significantly by a least-squares optimization procedure, which requires little additional computation or storage. In application to related sequences of problems for which accurate high-order extrapolation is possible, the new method has the strong advantage of performing such extrapolation with relatively little auxiliary storage or computation. Thus, the new method is well suited for time-implicit time marching models. Application to a time-implicit nonlinear transport equation with diffusion (high Reynolds' number channel flow) is discussed.
doi_str_mv 10.1016/0021-9991(75)90095-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22449020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999175900959</els_id><sourcerecordid>22449020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-42e60c351b5490c60474f3fd333e62d694f1be3034d64873208e8776198d82ba3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEVBEF1Ebx6Tx0aQ4gsK3eg6zCR3IDrTGZOpaH-9UysuXZ3Ndz44h5BTBlcMmLoG4Ixaa9mFLi4tgC2o3SMTBhYo10ztk8kfckiOcn4FAFNIMyFny36IbdxgmFVN599obPsm-jjMEjblZznEbnVMDuqyyXjym1Pycn_3PH-ki-XD0_x2Qb0QeqCSowIvClYV0oJXILWsRR2EEKh4UFbWrEIBQgYljRYcDBqtFbMmGF6VYkrOd94-de9rzINrY_bYNOUKu3V2nMtRzGEE5Q70qcs5Ye36FNsyfTkGbvuI285127lOF-7nEWfH2s2uhuOIj4jJZR9x5THEhH5woYv_C74BGVplWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22449020</pqid></control><display><type>article</type><title>Optimized block-implicit relaxation</title><source>ScienceDirect: Physics General Backfile</source><creator>Dietrich, D. ; McDonald, B.E. ; Warn-Varnas, A.</creator><creatorcontrib>Dietrich, D. ; McDonald, B.E. ; Warn-Varnas, A.</creatorcontrib><description>A new relaxation method, block-implicit relaxation (BIR), which is applicable to partial difference equations with mesh varying coefficients and irregular boundaries, is compared with the less general Wachspress-optimized ADI method in solving the Poisson-Dirichlet problem on a rectangle. BIR consists of dividing a large computational mesh into several small meshes, and solving the difference equation exactly in each submesh interior. Residuals on the submesh boundaries are reduced by an iterative relaxation scheme. BIR is found superior for all but the largest forcing function scales. The large-scale convergence is accelerated significantly by a least-squares optimization procedure, which requires little additional computation or storage. In application to related sequences of problems for which accurate high-order extrapolation is possible, the new method has the strong advantage of performing such extrapolation with relatively little auxiliary storage or computation. Thus, the new method is well suited for time-implicit time marching models. Application to a time-implicit nonlinear transport equation with diffusion (high Reynolds' number channel flow) is discussed.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(75)90095-9</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1975-01, Vol.18 (4), p.421-439</ispartof><rights>1975</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-42e60c351b5490c60474f3fd333e62d694f1be3034d64873208e8776198d82ba3</citedby><cites>FETCH-LOGICAL-c337t-42e60c351b5490c60474f3fd333e62d694f1be3034d64873208e8776198d82ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0021999175900959$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3632,27924,27925,46012</link.rule.ids></links><search><creatorcontrib>Dietrich, D.</creatorcontrib><creatorcontrib>McDonald, B.E.</creatorcontrib><creatorcontrib>Warn-Varnas, A.</creatorcontrib><title>Optimized block-implicit relaxation</title><title>Journal of computational physics</title><description>A new relaxation method, block-implicit relaxation (BIR), which is applicable to partial difference equations with mesh varying coefficients and irregular boundaries, is compared with the less general Wachspress-optimized ADI method in solving the Poisson-Dirichlet problem on a rectangle. BIR consists of dividing a large computational mesh into several small meshes, and solving the difference equation exactly in each submesh interior. Residuals on the submesh boundaries are reduced by an iterative relaxation scheme. BIR is found superior for all but the largest forcing function scales. The large-scale convergence is accelerated significantly by a least-squares optimization procedure, which requires little additional computation or storage. In application to related sequences of problems for which accurate high-order extrapolation is possible, the new method has the strong advantage of performing such extrapolation with relatively little auxiliary storage or computation. Thus, the new method is well suited for time-implicit time marching models. Application to a time-implicit nonlinear transport equation with diffusion (high Reynolds' number channel flow) is discussed.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEVBEF1Ebx6Tx0aQ4gsK3eg6zCR3IDrTGZOpaH-9UysuXZ3Ndz44h5BTBlcMmLoG4Ixaa9mFLi4tgC2o3SMTBhYo10ztk8kfckiOcn4FAFNIMyFny36IbdxgmFVN599obPsm-jjMEjblZznEbnVMDuqyyXjym1Pycn_3PH-ki-XD0_x2Qb0QeqCSowIvClYV0oJXILWsRR2EEKh4UFbWrEIBQgYljRYcDBqtFbMmGF6VYkrOd94-de9rzINrY_bYNOUKu3V2nMtRzGEE5Q70qcs5Ye36FNsyfTkGbvuI285127lOF-7nEWfH2s2uhuOIj4jJZR9x5THEhH5woYv_C74BGVplWg</recordid><startdate>19750101</startdate><enddate>19750101</enddate><creator>Dietrich, D.</creator><creator>McDonald, B.E.</creator><creator>Warn-Varnas, A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19750101</creationdate><title>Optimized block-implicit relaxation</title><author>Dietrich, D. ; McDonald, B.E. ; Warn-Varnas, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-42e60c351b5490c60474f3fd333e62d694f1be3034d64873208e8776198d82ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietrich, D.</creatorcontrib><creatorcontrib>McDonald, B.E.</creatorcontrib><creatorcontrib>Warn-Varnas, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietrich, D.</au><au>McDonald, B.E.</au><au>Warn-Varnas, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized block-implicit relaxation</atitle><jtitle>Journal of computational physics</jtitle><date>1975-01-01</date><risdate>1975</risdate><volume>18</volume><issue>4</issue><spage>421</spage><epage>439</epage><pages>421-439</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new relaxation method, block-implicit relaxation (BIR), which is applicable to partial difference equations with mesh varying coefficients and irregular boundaries, is compared with the less general Wachspress-optimized ADI method in solving the Poisson-Dirichlet problem on a rectangle. BIR consists of dividing a large computational mesh into several small meshes, and solving the difference equation exactly in each submesh interior. Residuals on the submesh boundaries are reduced by an iterative relaxation scheme. BIR is found superior for all but the largest forcing function scales. The large-scale convergence is accelerated significantly by a least-squares optimization procedure, which requires little additional computation or storage. In application to related sequences of problems for which accurate high-order extrapolation is possible, the new method has the strong advantage of performing such extrapolation with relatively little auxiliary storage or computation. Thus, the new method is well suited for time-implicit time marching models. Application to a time-implicit nonlinear transport equation with diffusion (high Reynolds' number channel flow) is discussed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(75)90095-9</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1975-01, Vol.18 (4), p.421-439
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_22449020
source ScienceDirect: Physics General Backfile
title Optimized block-implicit relaxation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20block-implicit%20relaxation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dietrich,%20D.&rft.date=1975-01-01&rft.volume=18&rft.issue=4&rft.spage=421&rft.epage=439&rft.pages=421-439&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(75)90095-9&rft_dat=%3Cproquest_cross%3E22449020%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-42e60c351b5490c60474f3fd333e62d694f1be3034d64873208e8776198d82ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=22449020&rft_id=info:pmid/&rfr_iscdi=true