Loading…
Omega‐3‐rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats
BACKGROUND Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three...
Saved in:
Published in: | Journal of the science of food and agriculture 2019-10, Vol.99 (13), p.6066-6075 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3534-25ee865d60ff378213d8fefb304155da237aea63a321f679c1261caa8cfddf253 |
---|---|
cites | cdi_FETCH-LOGICAL-c3534-25ee865d60ff378213d8fefb304155da237aea63a321f679c1261caa8cfddf253 |
container_end_page | 6075 |
container_issue | 13 |
container_start_page | 6066 |
container_title | Journal of the science of food and agriculture |
container_volume | 99 |
creator | Balakrishnan, Jeyakumar Dhavamani, Sugasini Sadasivam, Selvam Govindan Arumugam, Muthu Vellaikumar, Sampathrajan Ramalingam, Jagadeesan Shanmugam, Kathiresan |
description | BACKGROUND
Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three groups and treated for 28 days. The rats were fed with (1) standard chow (control group), (2) microalgal biomass rich in EPA and DHA along with standard chow (microalga group), and (3) fish oil that contains equivalent amounts of EPA and DHA along with standard chow (fish oil group). After intervention, biochemical indices, histopathological indices, relative mRNA expression of PUFA genes, antioxidant genes, inflammatory markers, and the fatty acid profile of major tissues were studied.
RESULTS
Animals treated with microalgal biomass showed significantly increased serum HDL levels (P |
doi_str_mv | 10.1002/jsfa.9884 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2245595235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245595235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-25ee865d60ff378213d8fefb304155da237aea63a321f679c1261caa8cfddf253</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhyMEokvhwAsgS1zgkK3_xE5yrCpaiir1AIhjNGuPWa-SePEkpXvjEXrl9XgSvN3CAYmDNdbMp0-j-RXFS8GXgnN5siEPy7ZpqkfFQvC2LjkX_HGxyDNZalHJo-IZ0YZz3rbGPC2OlJCykUYuip_XA36FXz_uVH4p2DW7pGjXaUeBGG2XbBXiAEQMxzWMFomtEoSRuWgjwRpvAccYLAMbHOvxBntiMDoWhm2KNxknTPPA-rDN89zyocd7AMYpxNvgcmU0wTQTy9ovIf8TSzDR8-KJh57wxUM9Lj6fv_t09r68ur64PDu9Kq3SqiqlRmyMdoZ7r-pGCuUaj36leCW0diBVDQhGgZLCm7q1QhphARrrnfNSq-PizcGbt_s2I03dEMhi38OIcaZOykrrVku1R1__g27inMa8XaaaVonaSJOptwfKpkiU0HfbFAZIu07wbp9Xt8-r2-eV2VcPxnk1oPtL_gkoAycH4Hs-3O7_pu7Dx_PTe-VvP6ikHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289317626</pqid></control><display><type>article</type><title>Omega‐3‐rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Balakrishnan, Jeyakumar ; Dhavamani, Sugasini ; Sadasivam, Selvam Govindan ; Arumugam, Muthu ; Vellaikumar, Sampathrajan ; Ramalingam, Jagadeesan ; Shanmugam, Kathiresan</creator><creatorcontrib>Balakrishnan, Jeyakumar ; Dhavamani, Sugasini ; Sadasivam, Selvam Govindan ; Arumugam, Muthu ; Vellaikumar, Sampathrajan ; Ramalingam, Jagadeesan ; Shanmugam, Kathiresan</creatorcontrib><description>BACKGROUND
Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three groups and treated for 28 days. The rats were fed with (1) standard chow (control group), (2) microalgal biomass rich in EPA and DHA along with standard chow (microalga group), and (3) fish oil that contains equivalent amounts of EPA and DHA along with standard chow (fish oil group). After intervention, biochemical indices, histopathological indices, relative mRNA expression of PUFA genes, antioxidant genes, inflammatory markers, and the fatty acid profile of major tissues were studied.
RESULTS
Animals treated with microalgal biomass showed significantly increased serum HDL levels (P < 0.05) and reduced oxidative stress markers with a concomitant decrease in urea and creatinine levels. Oral supplementation of microalgal biomass did not show any toxicity or damage in any major organs. The mRNA expression of PUFA genes was significantly downregulated (P < 0.05) and antioxidant genes were upregulated. Furthermore, the mRNA expression of pro‐inflammatory markers was significantly downregulated (P < 0.05) and anti‐inflammatory markers were upregulated. Oral supplementation of microalgal biomass improved DHA status in brain and liver.
CONCLUSION
The present study demonstrated that Isochrysis sp. can be used as a safe, alternative food supplement for ω‐3 fatty acids. © 2019 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.9884</identifier><identifier>PMID: 31228262</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject><![CDATA[Animal models ; Animal tissues ; Animals ; Antioxidants ; Antioxidants - metabolism ; Biomass ; Brain ; Brain - metabolism ; Creatinine ; desaturase ; DHA ; Dietary supplements ; Dietary Supplements - analysis ; Docosahexaenoic acid ; Docosahexaenoic Acids - administration & dosage ; Docosahexaenoic Acids - metabolism ; Eicosapentaenoic acid ; Eicosapentaenoic Acid - administration & dosage ; Eicosapentaenoic Acid - analogs & derivatives ; Eicosapentaenoic Acid - metabolism ; EPA ; Fatty acids ; Fatty Acids, Unsaturated - metabolism ; Fish oils ; Gene Expression ; Genes ; Haptophyta - chemistry ; Haptophyta - growth & development ; Haptophyta - metabolism ; High density lipoprotein ; Inflammation ; Isochrysis ; Isochrysis sp ; Lipids ; Lipids - blood ; liver ; Liver - metabolism ; Male ; Markers ; Microalgae - chemistry ; Microalgae - growth & development ; Microalgae - metabolism ; Oils & fats ; Organic chemistry ; Organs ; Oxidative stress ; Polyunsaturated fatty acids ; Rats ; Rats, Wistar ; Rodents ; Toxicity ; Urea ; Wistar rat]]></subject><ispartof>Journal of the science of food and agriculture, 2019-10, Vol.99 (13), p.6066-6075</ispartof><rights>2019 Society of Chemical Industry</rights><rights>2019 Society of Chemical Industry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-25ee865d60ff378213d8fefb304155da237aea63a321f679c1261caa8cfddf253</citedby><cites>FETCH-LOGICAL-c3534-25ee865d60ff378213d8fefb304155da237aea63a321f679c1261caa8cfddf253</cites><orcidid>0000-0001-5161-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31228262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balakrishnan, Jeyakumar</creatorcontrib><creatorcontrib>Dhavamani, Sugasini</creatorcontrib><creatorcontrib>Sadasivam, Selvam Govindan</creatorcontrib><creatorcontrib>Arumugam, Muthu</creatorcontrib><creatorcontrib>Vellaikumar, Sampathrajan</creatorcontrib><creatorcontrib>Ramalingam, Jagadeesan</creatorcontrib><creatorcontrib>Shanmugam, Kathiresan</creatorcontrib><title>Omega‐3‐rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three groups and treated for 28 days. The rats were fed with (1) standard chow (control group), (2) microalgal biomass rich in EPA and DHA along with standard chow (microalga group), and (3) fish oil that contains equivalent amounts of EPA and DHA along with standard chow (fish oil group). After intervention, biochemical indices, histopathological indices, relative mRNA expression of PUFA genes, antioxidant genes, inflammatory markers, and the fatty acid profile of major tissues were studied.
RESULTS
Animals treated with microalgal biomass showed significantly increased serum HDL levels (P < 0.05) and reduced oxidative stress markers with a concomitant decrease in urea and creatinine levels. Oral supplementation of microalgal biomass did not show any toxicity or damage in any major organs. The mRNA expression of PUFA genes was significantly downregulated (P < 0.05) and antioxidant genes were upregulated. Furthermore, the mRNA expression of pro‐inflammatory markers was significantly downregulated (P < 0.05) and anti‐inflammatory markers were upregulated. Oral supplementation of microalgal biomass improved DHA status in brain and liver.
CONCLUSION
The present study demonstrated that Isochrysis sp. can be used as a safe, alternative food supplement for ω‐3 fatty acids. © 2019 Society of Chemical Industry</description><subject>Animal models</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Biomass</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Creatinine</subject><subject>desaturase</subject><subject>DHA</subject><subject>Dietary supplements</subject><subject>Dietary Supplements - analysis</subject><subject>Docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - administration & dosage</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Eicosapentaenoic acid</subject><subject>Eicosapentaenoic Acid - administration & dosage</subject><subject>Eicosapentaenoic Acid - analogs & derivatives</subject><subject>Eicosapentaenoic Acid - metabolism</subject><subject>EPA</subject><subject>Fatty acids</subject><subject>Fatty Acids, Unsaturated - metabolism</subject><subject>Fish oils</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Haptophyta - chemistry</subject><subject>Haptophyta - growth & development</subject><subject>Haptophyta - metabolism</subject><subject>High density lipoprotein</subject><subject>Inflammation</subject><subject>Isochrysis</subject><subject>Isochrysis sp</subject><subject>Lipids</subject><subject>Lipids - blood</subject><subject>liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Markers</subject><subject>Microalgae - chemistry</subject><subject>Microalgae - growth & development</subject><subject>Microalgae - metabolism</subject><subject>Oils & fats</subject><subject>Organic chemistry</subject><subject>Organs</subject><subject>Oxidative stress</subject><subject>Polyunsaturated fatty acids</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Toxicity</subject><subject>Urea</subject><subject>Wistar rat</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQhyMEokvhwAsgS1zgkK3_xE5yrCpaiir1AIhjNGuPWa-SePEkpXvjEXrl9XgSvN3CAYmDNdbMp0-j-RXFS8GXgnN5siEPy7ZpqkfFQvC2LjkX_HGxyDNZalHJo-IZ0YZz3rbGPC2OlJCykUYuip_XA36FXz_uVH4p2DW7pGjXaUeBGG2XbBXiAEQMxzWMFomtEoSRuWgjwRpvAccYLAMbHOvxBntiMDoWhm2KNxknTPPA-rDN89zyocd7AMYpxNvgcmU0wTQTy9ovIf8TSzDR8-KJh57wxUM9Lj6fv_t09r68ur64PDu9Kq3SqiqlRmyMdoZ7r-pGCuUaj36leCW0diBVDQhGgZLCm7q1QhphARrrnfNSq-PizcGbt_s2I03dEMhi38OIcaZOykrrVku1R1__g27inMa8XaaaVonaSJOptwfKpkiU0HfbFAZIu07wbp9Xt8-r2-eV2VcPxnk1oPtL_gkoAycH4Hs-3O7_pu7Dx_PTe-VvP6ikHQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Balakrishnan, Jeyakumar</creator><creator>Dhavamani, Sugasini</creator><creator>Sadasivam, Selvam Govindan</creator><creator>Arumugam, Muthu</creator><creator>Vellaikumar, Sampathrajan</creator><creator>Ramalingam, Jagadeesan</creator><creator>Shanmugam, Kathiresan</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5161-8343</orcidid></search><sort><creationdate>201910</creationdate><title>Omega‐3‐rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats</title><author>Balakrishnan, Jeyakumar ; Dhavamani, Sugasini ; Sadasivam, Selvam Govindan ; Arumugam, Muthu ; Vellaikumar, Sampathrajan ; Ramalingam, Jagadeesan ; Shanmugam, Kathiresan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-25ee865d60ff378213d8fefb304155da237aea63a321f679c1261caa8cfddf253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Biomass</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Creatinine</topic><topic>desaturase</topic><topic>DHA</topic><topic>Dietary supplements</topic><topic>Dietary Supplements - analysis</topic><topic>Docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - administration & dosage</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Eicosapentaenoic acid</topic><topic>Eicosapentaenoic Acid - administration & dosage</topic><topic>Eicosapentaenoic Acid - analogs & derivatives</topic><topic>Eicosapentaenoic Acid - metabolism</topic><topic>EPA</topic><topic>Fatty acids</topic><topic>Fatty Acids, Unsaturated - metabolism</topic><topic>Fish oils</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Haptophyta - chemistry</topic><topic>Haptophyta - growth & development</topic><topic>Haptophyta - metabolism</topic><topic>High density lipoprotein</topic><topic>Inflammation</topic><topic>Isochrysis</topic><topic>Isochrysis sp</topic><topic>Lipids</topic><topic>Lipids - blood</topic><topic>liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Markers</topic><topic>Microalgae - chemistry</topic><topic>Microalgae - growth & development</topic><topic>Microalgae - metabolism</topic><topic>Oils & fats</topic><topic>Organic chemistry</topic><topic>Organs</topic><topic>Oxidative stress</topic><topic>Polyunsaturated fatty acids</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Toxicity</topic><topic>Urea</topic><topic>Wistar rat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Jeyakumar</creatorcontrib><creatorcontrib>Dhavamani, Sugasini</creatorcontrib><creatorcontrib>Sadasivam, Selvam Govindan</creatorcontrib><creatorcontrib>Arumugam, Muthu</creatorcontrib><creatorcontrib>Vellaikumar, Sampathrajan</creatorcontrib><creatorcontrib>Ramalingam, Jagadeesan</creatorcontrib><creatorcontrib>Shanmugam, Kathiresan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Jeyakumar</au><au>Dhavamani, Sugasini</au><au>Sadasivam, Selvam Govindan</au><au>Arumugam, Muthu</au><au>Vellaikumar, Sampathrajan</au><au>Ramalingam, Jagadeesan</au><au>Shanmugam, Kathiresan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Omega‐3‐rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2019-10</date><risdate>2019</risdate><volume>99</volume><issue>13</issue><spage>6066</spage><epage>6075</epage><pages>6066-6075</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three groups and treated for 28 days. The rats were fed with (1) standard chow (control group), (2) microalgal biomass rich in EPA and DHA along with standard chow (microalga group), and (3) fish oil that contains equivalent amounts of EPA and DHA along with standard chow (fish oil group). After intervention, biochemical indices, histopathological indices, relative mRNA expression of PUFA genes, antioxidant genes, inflammatory markers, and the fatty acid profile of major tissues were studied.
RESULTS
Animals treated with microalgal biomass showed significantly increased serum HDL levels (P < 0.05) and reduced oxidative stress markers with a concomitant decrease in urea and creatinine levels. Oral supplementation of microalgal biomass did not show any toxicity or damage in any major organs. The mRNA expression of PUFA genes was significantly downregulated (P < 0.05) and antioxidant genes were upregulated. Furthermore, the mRNA expression of pro‐inflammatory markers was significantly downregulated (P < 0.05) and anti‐inflammatory markers were upregulated. Oral supplementation of microalgal biomass improved DHA status in brain and liver.
CONCLUSION
The present study demonstrated that Isochrysis sp. can be used as a safe, alternative food supplement for ω‐3 fatty acids. © 2019 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>31228262</pmid><doi>10.1002/jsfa.9884</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5161-8343</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2019-10, Vol.99 (13), p.6066-6075 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2245595235 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animal models Animal tissues Animals Antioxidants Antioxidants - metabolism Biomass Brain Brain - metabolism Creatinine desaturase DHA Dietary supplements Dietary Supplements - analysis Docosahexaenoic acid Docosahexaenoic Acids - administration & dosage Docosahexaenoic Acids - metabolism Eicosapentaenoic acid Eicosapentaenoic Acid - administration & dosage Eicosapentaenoic Acid - analogs & derivatives Eicosapentaenoic Acid - metabolism EPA Fatty acids Fatty Acids, Unsaturated - metabolism Fish oils Gene Expression Genes Haptophyta - chemistry Haptophyta - growth & development Haptophyta - metabolism High density lipoprotein Inflammation Isochrysis Isochrysis sp Lipids Lipids - blood liver Liver - metabolism Male Markers Microalgae - chemistry Microalgae - growth & development Microalgae - metabolism Oils & fats Organic chemistry Organs Oxidative stress Polyunsaturated fatty acids Rats Rats, Wistar Rodents Toxicity Urea Wistar rat |
title | Omega‐3‐rich Isochrysis sp. biomass enhances brain docosahexaenoic acid levels and improves serum lipid profile and antioxidant status in Wistar rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Omega%E2%80%903%E2%80%90rich%20Isochrysis%20sp.%20biomass%20enhances%20brain%20docosahexaenoic%20acid%20levels%20and%20improves%20serum%20lipid%20profile%20and%20antioxidant%20status%20in%20Wistar%20rats&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Balakrishnan,%20Jeyakumar&rft.date=2019-10&rft.volume=99&rft.issue=13&rft.spage=6066&rft.epage=6075&rft.pages=6066-6075&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.9884&rft_dat=%3Cproquest_cross%3E2245595235%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3534-25ee865d60ff378213d8fefb304155da237aea63a321f679c1261caa8cfddf253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289317626&rft_id=info:pmid/31228262&rfr_iscdi=true |