Loading…

Quantum amplification of mechanical oscillator motion

Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state....

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2019-06, Vol.364 (6446), p.1163-1165
Main Authors: Burd, S. C., Srinivas, R., Bollinger, J. J., Wilson, A. C., Wineland, D. J., Leibfried, D., Slichter, D. H., Allcock, D. T. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593
cites cdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593
container_end_page 1165
container_issue 6446
container_start_page 1163
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Burd, S. C.
Srinivas, R.
Bollinger, J. J.
Wilson, A. C.
Wineland, D. J.
Leibfried, D.
Slichter, D. H.
Allcock, D. T. C.
description Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.
doi_str_mv 10.1126/science.aaw2884
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2245607493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26681646</jstor_id><sourcerecordid>26681646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4Mobk7PnpSCFy_dkjefPcrwCwYi6DmkWYIdbTObFvG_X8bqDp5eyO_J-_54ELomeE4IiEW0lWutmxvzA0qxEzQluOB5AZieoinGVOQKSz5BFzFuME5ZQc_RhBIAojibIv4-mLYfmsw027rylTV9Fdos-Kxx9su06aHOQjpT16YPXdaEfX6Jzrypo7sa5wx9Pj1-LF_y1dvz6_JhlVvGWZ9zawsBRFADwGFtuJKemgJKn8rKUnDLDUheQqKoAyal8KUXBVlj722qOkP3h73bLnwPLva6qaJ1qUvrwhA1AOMCS1bQhN79Qzdh6NrULlFcAijJeKIWB8p2IcbOeb3tqsZ0v5pgvTeqR6N6NJp-3I57h7Jx6yP_pzABNwdgE5OgYw5CKCKYoDur33wK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257228745</pqid></control><display><type>article</type><title>Quantum amplification of mechanical oscillator motion</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Burd, S. C. ; Srinivas, R. ; Bollinger, J. J. ; Wilson, A. C. ; Wineland, D. J. ; Leibfried, D. ; Slichter, D. H. ; Allcock, D. T. C.</creator><creatorcontrib>Burd, S. C. ; Srinivas, R. ; Bollinger, J. J. ; Wilson, A. C. ; Wineland, D. J. ; Leibfried, D. ; Slichter, D. H. ; Allcock, D. T. C.</creatorcontrib><description>Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaw2884</identifier><identifier>PMID: 31221854</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Amplification ; Compressing ; Displacement ; Fluctuations ; Mechanical oscillators ; Motion ; Oscillators ; Position measurement</subject><ispartof>Science (American Association for the Advancement of Science), 2019-06, Vol.364 (6446), p.1163-1165</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</citedby><cites>FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</cites><orcidid>0000-0002-7317-5560 ; 0000-0001-5065-393X ; 0000-0001-9117-7896 ; 0000-0002-1228-0631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31221854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burd, S. C.</creatorcontrib><creatorcontrib>Srinivas, R.</creatorcontrib><creatorcontrib>Bollinger, J. J.</creatorcontrib><creatorcontrib>Wilson, A. C.</creatorcontrib><creatorcontrib>Wineland, D. J.</creatorcontrib><creatorcontrib>Leibfried, D.</creatorcontrib><creatorcontrib>Slichter, D. H.</creatorcontrib><creatorcontrib>Allcock, D. T. C.</creatorcontrib><title>Quantum amplification of mechanical oscillator motion</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.</description><subject>Amplification</subject><subject>Compressing</subject><subject>Displacement</subject><subject>Fluctuations</subject><subject>Mechanical oscillators</subject><subject>Motion</subject><subject>Oscillators</subject><subject>Position measurement</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYh4Mobk7PnpSCFy_dkjefPcrwCwYi6DmkWYIdbTObFvG_X8bqDp5eyO_J-_54ELomeE4IiEW0lWutmxvzA0qxEzQluOB5AZieoinGVOQKSz5BFzFuME5ZQc_RhBIAojibIv4-mLYfmsw027rylTV9Fdos-Kxx9su06aHOQjpT16YPXdaEfX6Jzrypo7sa5wx9Pj1-LF_y1dvz6_JhlVvGWZ9zawsBRFADwGFtuJKemgJKn8rKUnDLDUheQqKoAyal8KUXBVlj722qOkP3h73bLnwPLva6qaJ1qUvrwhA1AOMCS1bQhN79Qzdh6NrULlFcAijJeKIWB8p2IcbOeb3tqsZ0v5pgvTeqR6N6NJp-3I57h7Jx6yP_pzABNwdgE5OgYw5CKCKYoDur33wK</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Burd, S. C.</creator><creator>Srinivas, R.</creator><creator>Bollinger, J. J.</creator><creator>Wilson, A. C.</creator><creator>Wineland, D. J.</creator><creator>Leibfried, D.</creator><creator>Slichter, D. H.</creator><creator>Allcock, D. T. C.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7317-5560</orcidid><orcidid>https://orcid.org/0000-0001-5065-393X</orcidid><orcidid>https://orcid.org/0000-0001-9117-7896</orcidid><orcidid>https://orcid.org/0000-0002-1228-0631</orcidid></search><sort><creationdate>20190621</creationdate><title>Quantum amplification of mechanical oscillator motion</title><author>Burd, S. C. ; Srinivas, R. ; Bollinger, J. J. ; Wilson, A. C. ; Wineland, D. J. ; Leibfried, D. ; Slichter, D. H. ; Allcock, D. T. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplification</topic><topic>Compressing</topic><topic>Displacement</topic><topic>Fluctuations</topic><topic>Mechanical oscillators</topic><topic>Motion</topic><topic>Oscillators</topic><topic>Position measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burd, S. C.</creatorcontrib><creatorcontrib>Srinivas, R.</creatorcontrib><creatorcontrib>Bollinger, J. J.</creatorcontrib><creatorcontrib>Wilson, A. C.</creatorcontrib><creatorcontrib>Wineland, D. J.</creatorcontrib><creatorcontrib>Leibfried, D.</creatorcontrib><creatorcontrib>Slichter, D. H.</creatorcontrib><creatorcontrib>Allcock, D. T. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burd, S. C.</au><au>Srinivas, R.</au><au>Bollinger, J. J.</au><au>Wilson, A. C.</au><au>Wineland, D. J.</au><au>Leibfried, D.</au><au>Slichter, D. H.</au><au>Allcock, D. T. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum amplification of mechanical oscillator motion</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>364</volume><issue>6446</issue><spage>1163</spage><epage>1165</epage><pages>1163-1165</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31221854</pmid><doi>10.1126/science.aaw2884</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-7317-5560</orcidid><orcidid>https://orcid.org/0000-0001-5065-393X</orcidid><orcidid>https://orcid.org/0000-0001-9117-7896</orcidid><orcidid>https://orcid.org/0000-0002-1228-0631</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-06, Vol.364 (6446), p.1163-1165
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2245607493
source American Association for the Advancement of Science; Alma/SFX Local Collection
subjects Amplification
Compressing
Displacement
Fluctuations
Mechanical oscillators
Motion
Oscillators
Position measurement
title Quantum amplification of mechanical oscillator motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20amplification%20of%20mechanical%20oscillator%20motion&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Burd,%20S.%20C.&rft.date=2019-06-21&rft.volume=364&rft.issue=6446&rft.spage=1163&rft.epage=1165&rft.pages=1163-1165&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaw2884&rft_dat=%3Cjstor_proqu%3E26681646%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2257228745&rft_id=info:pmid/31221854&rft_jstor_id=26681646&rfr_iscdi=true