Loading…
Quantum amplification of mechanical oscillator motion
Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state....
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2019-06, Vol.364 (6446), p.1163-1165 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593 |
---|---|
cites | cdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593 |
container_end_page | 1165 |
container_issue | 6446 |
container_start_page | 1163 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Burd, S. C. Srinivas, R. Bollinger, J. J. Wilson, A. C. Wineland, D. J. Leibfried, D. Slichter, D. H. Allcock, D. T. C. |
description | Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements. |
doi_str_mv | 10.1126/science.aaw2884 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2245607493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26681646</jstor_id><sourcerecordid>26681646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4Mobk7PnpSCFy_dkjefPcrwCwYi6DmkWYIdbTObFvG_X8bqDp5eyO_J-_54ELomeE4IiEW0lWutmxvzA0qxEzQluOB5AZieoinGVOQKSz5BFzFuME5ZQc_RhBIAojibIv4-mLYfmsw027rylTV9Fdos-Kxx9su06aHOQjpT16YPXdaEfX6Jzrypo7sa5wx9Pj1-LF_y1dvz6_JhlVvGWZ9zawsBRFADwGFtuJKemgJKn8rKUnDLDUheQqKoAyal8KUXBVlj722qOkP3h73bLnwPLva6qaJ1qUvrwhA1AOMCS1bQhN79Qzdh6NrULlFcAijJeKIWB8p2IcbOeb3tqsZ0v5pgvTeqR6N6NJp-3I57h7Jx6yP_pzABNwdgE5OgYw5CKCKYoDur33wK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257228745</pqid></control><display><type>article</type><title>Quantum amplification of mechanical oscillator motion</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Burd, S. C. ; Srinivas, R. ; Bollinger, J. J. ; Wilson, A. C. ; Wineland, D. J. ; Leibfried, D. ; Slichter, D. H. ; Allcock, D. T. C.</creator><creatorcontrib>Burd, S. C. ; Srinivas, R. ; Bollinger, J. J. ; Wilson, A. C. ; Wineland, D. J. ; Leibfried, D. ; Slichter, D. H. ; Allcock, D. T. C.</creatorcontrib><description>Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaw2884</identifier><identifier>PMID: 31221854</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Amplification ; Compressing ; Displacement ; Fluctuations ; Mechanical oscillators ; Motion ; Oscillators ; Position measurement</subject><ispartof>Science (American Association for the Advancement of Science), 2019-06, Vol.364 (6446), p.1163-1165</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</citedby><cites>FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</cites><orcidid>0000-0002-7317-5560 ; 0000-0001-5065-393X ; 0000-0001-9117-7896 ; 0000-0002-1228-0631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31221854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burd, S. C.</creatorcontrib><creatorcontrib>Srinivas, R.</creatorcontrib><creatorcontrib>Bollinger, J. J.</creatorcontrib><creatorcontrib>Wilson, A. C.</creatorcontrib><creatorcontrib>Wineland, D. J.</creatorcontrib><creatorcontrib>Leibfried, D.</creatorcontrib><creatorcontrib>Slichter, D. H.</creatorcontrib><creatorcontrib>Allcock, D. T. C.</creatorcontrib><title>Quantum amplification of mechanical oscillator motion</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.</description><subject>Amplification</subject><subject>Compressing</subject><subject>Displacement</subject><subject>Fluctuations</subject><subject>Mechanical oscillators</subject><subject>Motion</subject><subject>Oscillators</subject><subject>Position measurement</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYh4Mobk7PnpSCFy_dkjefPcrwCwYi6DmkWYIdbTObFvG_X8bqDp5eyO_J-_54ELomeE4IiEW0lWutmxvzA0qxEzQluOB5AZieoinGVOQKSz5BFzFuME5ZQc_RhBIAojibIv4-mLYfmsw027rylTV9Fdos-Kxx9su06aHOQjpT16YPXdaEfX6Jzrypo7sa5wx9Pj1-LF_y1dvz6_JhlVvGWZ9zawsBRFADwGFtuJKemgJKn8rKUnDLDUheQqKoAyal8KUXBVlj722qOkP3h73bLnwPLva6qaJ1qUvrwhA1AOMCS1bQhN79Qzdh6NrULlFcAijJeKIWB8p2IcbOeb3tqsZ0v5pgvTeqR6N6NJp-3I57h7Jx6yP_pzABNwdgE5OgYw5CKCKYoDur33wK</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Burd, S. C.</creator><creator>Srinivas, R.</creator><creator>Bollinger, J. J.</creator><creator>Wilson, A. C.</creator><creator>Wineland, D. J.</creator><creator>Leibfried, D.</creator><creator>Slichter, D. H.</creator><creator>Allcock, D. T. C.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7317-5560</orcidid><orcidid>https://orcid.org/0000-0001-5065-393X</orcidid><orcidid>https://orcid.org/0000-0001-9117-7896</orcidid><orcidid>https://orcid.org/0000-0002-1228-0631</orcidid></search><sort><creationdate>20190621</creationdate><title>Quantum amplification of mechanical oscillator motion</title><author>Burd, S. C. ; Srinivas, R. ; Bollinger, J. J. ; Wilson, A. C. ; Wineland, D. J. ; Leibfried, D. ; Slichter, D. H. ; Allcock, D. T. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplification</topic><topic>Compressing</topic><topic>Displacement</topic><topic>Fluctuations</topic><topic>Mechanical oscillators</topic><topic>Motion</topic><topic>Oscillators</topic><topic>Position measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burd, S. C.</creatorcontrib><creatorcontrib>Srinivas, R.</creatorcontrib><creatorcontrib>Bollinger, J. J.</creatorcontrib><creatorcontrib>Wilson, A. C.</creatorcontrib><creatorcontrib>Wineland, D. J.</creatorcontrib><creatorcontrib>Leibfried, D.</creatorcontrib><creatorcontrib>Slichter, D. H.</creatorcontrib><creatorcontrib>Allcock, D. T. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burd, S. C.</au><au>Srinivas, R.</au><au>Bollinger, J. J.</au><au>Wilson, A. C.</au><au>Wineland, D. J.</au><au>Leibfried, D.</au><au>Slichter, D. H.</au><au>Allcock, D. T. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum amplification of mechanical oscillator motion</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>364</volume><issue>6446</issue><spage>1163</spage><epage>1165</epage><pages>1163-1165</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator’s motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31221854</pmid><doi>10.1126/science.aaw2884</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-7317-5560</orcidid><orcidid>https://orcid.org/0000-0001-5065-393X</orcidid><orcidid>https://orcid.org/0000-0001-9117-7896</orcidid><orcidid>https://orcid.org/0000-0002-1228-0631</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-06, Vol.364 (6446), p.1163-1165 |
issn | 0036-8075 1095-9203 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2245607493 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Amplification Compressing Displacement Fluctuations Mechanical oscillators Motion Oscillators Position measurement |
title | Quantum amplification of mechanical oscillator motion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20amplification%20of%20mechanical%20oscillator%20motion&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Burd,%20S.%20C.&rft.date=2019-06-21&rft.volume=364&rft.issue=6446&rft.spage=1163&rft.epage=1165&rft.pages=1163-1165&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaw2884&rft_dat=%3Cjstor_proqu%3E26681646%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-5cc962163a2252da587f3a92bf2887b65c5a275b29623e24776fbf691d0ffc593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2257228745&rft_id=info:pmid/31221854&rft_jstor_id=26681646&rfr_iscdi=true |