Loading…

Effect of aggregation on adsorption phenomena

Adsorption at an attractive surface in a system with particles self-assembling into small clusters is studied by molecular dynamics simulation. We assume Lennard-Jones plus repulsive Yukawa tail interactions and focus on small densities. The relative increase in the temperature at the critical clust...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-06, Vol.150 (23), p.234702-234702
Main Authors: Litniewski, M., Ciach, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adsorption at an attractive surface in a system with particles self-assembling into small clusters is studied by molecular dynamics simulation. We assume Lennard-Jones plus repulsive Yukawa tail interactions and focus on small densities. The relative increase in the temperature at the critical cluster concentration near the attractive surface (CCCS) shows a power-law dependence on the strength of the wall-particle attraction. At temperatures below the CCCS, the adsorbed layer consists of undeformed clusters if the wall-particle attraction is not too strong. Above the CCCS or for strong attraction leading to flattening of the adsorbed aggregates, we obtain a monolayer that for strong or very strong attraction consists of flattened clusters or stripes, respectively. The accumulated repulsion from the particles adsorbed at the wall leads to a repulsive barrier that slows down the adsorption process, and the accession time grows rapidly with the strength of the wall-particle attraction. Beyond the adsorbed layer of particles, a depletion region of a thickness comparable with the range of the repulsive tail of interactions occurs, and the density in this region decreases with increasing strength of the wall-particle attraction. At larger separations, the exponentially damped oscillations of density agree with theoretical predictions for self-assembling systems. Structural and thermal properties of the bulk are also determined. In particular, a new structural crossover associated with the maximum of the specific heat and a double-peaked histogram of the cluster size distribution are observed.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5102157