Loading…
Effect of aggregation on adsorption phenomena
Adsorption at an attractive surface in a system with particles self-assembling into small clusters is studied by molecular dynamics simulation. We assume Lennard-Jones plus repulsive Yukawa tail interactions and focus on small densities. The relative increase in the temperature at the critical clust...
Saved in:
Published in: | The Journal of chemical physics 2019-06, Vol.150 (23), p.234702-234702 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adsorption at an attractive surface in a system with particles self-assembling into small clusters is studied by molecular dynamics simulation. We assume Lennard-Jones plus repulsive Yukawa tail interactions and focus on small densities. The relative increase in the temperature at the critical cluster concentration near the attractive surface (CCCS) shows a power-law dependence on the strength of the wall-particle attraction. At temperatures below the CCCS, the adsorbed layer consists of undeformed clusters if the wall-particle attraction is not too strong. Above the CCCS or for strong attraction leading to flattening of the adsorbed aggregates, we obtain a monolayer that for strong or very strong attraction consists of flattened clusters or stripes, respectively. The accumulated repulsion from the particles adsorbed at the wall leads to a repulsive barrier that slows down the adsorption process, and the accession time grows rapidly with the strength of the wall-particle attraction. Beyond the adsorbed layer of particles, a depletion region of a thickness comparable with the range of the repulsive tail of interactions occurs, and the density in this region decreases with increasing strength of the wall-particle attraction. At larger separations, the exponentially damped oscillations of density agree with theoretical predictions for self-assembling systems. Structural and thermal properties of the bulk are also determined. In particular, a new structural crossover associated with the maximum of the specific heat and a double-peaked histogram of the cluster size distribution are observed. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5102157 |