Loading…

Long-term fertilization and manuring with different organics alter stability of carbon in colloidal organo-mineral fraction in soils of varying clay mineralogy

Majority of organic matter is bound to clay minerals to form stable colloidal organo-mineral fraction (COMF) in soil. Stability of carbon (C) in COMF is crucial for long-term C sequestration in soil. However, information on the effect of long-term fertilization and manuring with various organic sour...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2019-09, Vol.684, p.682-693
Main Authors: Das, Ruma, Purakayastha, T.J., Das, Debarup, Ahmed, Nayan, Kumar, Rahul, Biswas, Sunanda, Walia, S.S., Singh, Rohitashav, Shukla, V.K., Yadava, M.S., Ravisankar, N., Datta, S.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Majority of organic matter is bound to clay minerals to form stable colloidal organo-mineral fraction (COMF) in soil. Stability of carbon (C) in COMF is crucial for long-term C sequestration in soil. However, information on the effect of long-term fertilization and manuring with various organic sources on C stability in such fraction in soils with varying clay mineralogy is scarce. The present study was, therefore, carried out to assess the effect of thirty-one years of continuous fertilization and manuring with different organics on C-stability in COMF extracted from an Inceptisol, a Vertisol, a Mollisol, and an Alfisol. The treatments comprised of control (no fertilization), 100% NPK (100% of recommended N, P and K through fertilizer), 50% NPK+ 50% of recommended N supplied through either farm yard manure (FYM) or cereal residue (CR) or green manure (GM). The stability of C (1/k) in COMF was determined from desorption rate constant (k) of humus-C by sequential extraction and correlated with extractable amorphous Fe-Al-Si-oxides, and crystallite size of illite minerals. Long-term fertilization and manuring with the above sources of organic altered the contents of amorphous Fe-Al-Si-oxides, and decreased the crystallite size of illite in all the soil orders. Fifty percent substitution of fertilizer N by various organics significantly increased C-stability in COMF by 27–221% (mean 111%) over full dose of NPK (100% NPK). Smectite dominating Vertisol exhibited highest stability of C followed by the Mollisol, the Inceptisol and the Alfisol. Stability of such C in soil was correlated positively with the amount of amorphous Fe and Al oxides but negatively with crystallite size of illite (r = −0.46, P 
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.05.327