Loading…

SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria

The recently identified PPR-E+/NVWA/DYW2 RNA editing complex provides insights into the mechanism of RNA editing in higher plant organelles. However, whether the complex works together with the previously identified editing factors RIPs/MORFs is unclear. In this paper, we identified a maize Smk6 gen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant physiology 2019-09, Vol.240, p.152992-152992, Article 152992
Main Authors: Ding, Shuo, Liu, Xin-Yuan, Wang, Hong-Chun, Wang, Yong, Tang, Jiao-Jiao, Yang, Yan-Zhuo, Tan, Bao-Cai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recently identified PPR-E+/NVWA/DYW2 RNA editing complex provides insights into the mechanism of RNA editing in higher plant organelles. However, whether the complex works together with the previously identified editing factors RIPs/MORFs is unclear. In this paper, we identified a maize Smk6 gene, which encodes a mitochondrion-targeted PPR-E+protein with E1 and E2 domains at the C terminus. Loss of Smk6 function affects the C-to-U editing at nad1-740, nad4L-110, nad7-739, and mttB-138,139 sites, impairs mitochondrial activity and blocks embryogenesis and endosperm development. Genetic and molecular analysis indicated that SMK6 is the maize ortholog of the Arabidopsis SLO2, which is a component of the PPR-E+/NVWA/DYW2 editing complex. However, yeast two-hybrid analyses did not detect any interaction between SMK6 and any of the mitochondrion-targeted RIPs/MORFs, suggesting that RIPs/MORFs may not be a component of PPR-E+/NVWA/DYW2 RNA editing complex. Further analyses are required to provide evidence that RIP/MORFs and SMK6 do not physically interact in vivo.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2019.152992