Loading…

Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis

The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differen...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2019-10, Vol.224 (1), p.258-273
Main Authors: Zou, Yi, Zhang, Xiaojing, Tan, Yunyi, Huang, Jia-Bao, Zheng, Zhiqiong, Tao, Li-Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4108-23780c01e99856d68533c2c8af61e2f1ca369c09620cd949279122792e9ecfc63
cites cdi_FETCH-LOGICAL-c4108-23780c01e99856d68533c2c8af61e2f1ca369c09620cd949279122792e9ecfc63
container_end_page 273
container_issue 1
container_start_page 258
container_title The New phytologist
container_volume 224
creator Zou, Yi
Zhang, Xiaojing
Tan, Yunyi
Huang, Jia-Bao
Zheng, Zhiqiong
Tao, Li-Zhen
description The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differentiation is not well understood. Using a forward genetic screen, we isolated a mutant, defective primary root 2 (dpr2), defective in root apical meristem (RAM) maintenance. The DPR2 gene encodes phosphoethanolamine N-methyltransferase 1 (PEAMT1) that catalyzes phosphocholine biosynthesis in Arabidopsis. We characterized the primary root phenotypes of dpr2 using various marker lines, using histochemical and pharmacological analysis to probe early root development. Loss-of-function of DPR2/PEAMT1 resulted in RAM consumption by affecting root stem cell niche, division zone, elongation and differentiation zone (EDZ). PIN-FORMED (PIN) protein abundance, PIN2 polar distribution and general endocytosis were impaired in the root tip of dpr2. Excess hydrogen peroxide and auxin accumulate in the EDZ of dpr2, leading to RAM consumption by accelerating cell differentiation. Suppression of ROS over-accumulation or inhibition of auxin signalling partially prevent RAM differentiation in dpr2 after choline starvation. Taken together, we conclude that the EDZ of the root tip is most sensitive to choline shortage, leading to RAM consumption through an ROS–auxin regulation module.
doi_str_mv 10.1111/nph.16028
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2248384885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26779772</jstor_id><sourcerecordid>26779772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-23780c01e99856d68533c2c8af61e2f1ca369c09620cd949279122792e9ecfc63</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpaTbbHvoDWgS9pAcn-vDK0jGEtCmEJPQDejOz8jirxZZcSSbdH9T_WaWb5FCoDiNmeOZl4CHkDWfHvLwTP22OuWJCPyMLXitTaS6b52TByqhStfpxQA5T2jLGzEqJl-RAclErodmC_L7ZhDRtAuYN-DDA6DzSq2os_W7IEXzqMUJCyqkNPke3njMmmgMdwfmMHrxFGnoaQ8gUJmdhoCNGlzKOdL2j0Pdos_O39Mv1Vwq-ozD_cr6KeDsPkLGjFoeBdq5wEX12kF3w1Hl6GmHtujAll16RFz0MCV8__Evy_eP5t7OL6vL60-ez08vK1pzpSshGM8s4GqNXqlN6JaUVVkOvOIqeW5DKWGaUYLYztRGN4aIUgQZtb5VckqN97hTDzxlTbkeX7u8Dj2FOrRC1lrrWJXhJ3v-DbsMcfbmuUJpJWRToQn3YUzaGlCL27RTdCHHXctbeu2uLu_avu8K-e0ic1yN2T-SjrAKc7IE7N-Du_0nt1c3FY-Tb_cY25RCfNoRqGtM0Qv4BFj6vLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280331378</pqid></control><display><type>article</type><title>Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis</title><source>Wiley</source><source>JSTOR Archival Journals</source><creator>Zou, Yi ; Zhang, Xiaojing ; Tan, Yunyi ; Huang, Jia-Bao ; Zheng, Zhiqiong ; Tao, Li-Zhen</creator><creatorcontrib>Zou, Yi ; Zhang, Xiaojing ; Tan, Yunyi ; Huang, Jia-Bao ; Zheng, Zhiqiong ; Tao, Li-Zhen</creatorcontrib><description>The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differentiation is not well understood. Using a forward genetic screen, we isolated a mutant, defective primary root 2 (dpr2), defective in root apical meristem (RAM) maintenance. The DPR2 gene encodes phosphoethanolamine N-methyltransferase 1 (PEAMT1) that catalyzes phosphocholine biosynthesis in Arabidopsis. We characterized the primary root phenotypes of dpr2 using various marker lines, using histochemical and pharmacological analysis to probe early root development. Loss-of-function of DPR2/PEAMT1 resulted in RAM consumption by affecting root stem cell niche, division zone, elongation and differentiation zone (EDZ). PIN-FORMED (PIN) protein abundance, PIN2 polar distribution and general endocytosis were impaired in the root tip of dpr2. Excess hydrogen peroxide and auxin accumulate in the EDZ of dpr2, leading to RAM consumption by accelerating cell differentiation. Suppression of ROS over-accumulation or inhibition of auxin signalling partially prevent RAM differentiation in dpr2 after choline starvation. Taken together, we conclude that the EDZ of the root tip is most sensitive to choline shortage, leading to RAM consumption through an ROS–auxin regulation module.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16028</identifier><identifier>PMID: 31246280</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Arabidopsis ; Arabidopsis - cytology ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; auxin ; Auxins ; Biosynthesis ; Cell differentiation ; Cell Differentiation - drug effects ; Cell division ; Cell Division - drug effects ; Choline ; Choline - pharmacology ; Consumption ; Differentiation (biology) ; Elongation ; Endocytosis ; Endocytosis - drug effects ; Ethanolamines - metabolism ; Genetic screening ; Hydrogen peroxide ; Indoleacetic Acids - pharmacology ; Meristem - cytology ; Meristem - drug effects ; Meristems ; Methyltransferase ; Methyltransferases - metabolism ; Microtubules - drug effects ; Microtubules - metabolism ; Mutation - genetics ; Niches ; Onium Compounds - pharmacology ; Phenotype ; Phenotypes ; Phosphocholine ; phosphoethanolamine N‐methyltransferase (PEAMT) ; Reactive oxygen species ; reactive oxygen species (ROS) ; Reactive Oxygen Species - metabolism ; Regulators ; root apical meristem (RAM) ; Root development ; Starvation ; Stem cells ; Stem Cells - drug effects ; Stem Cells - metabolism</subject><ispartof>The New phytologist, 2019-10, Vol.224 (1), p.258-273</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-23780c01e99856d68533c2c8af61e2f1ca369c09620cd949279122792e9ecfc63</citedby><cites>FETCH-LOGICAL-c4108-23780c01e99856d68533c2c8af61e2f1ca369c09620cd949279122792e9ecfc63</cites><orcidid>0000-0003-4640-1793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26779772$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26779772$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31246280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Zhang, Xiaojing</creatorcontrib><creatorcontrib>Tan, Yunyi</creatorcontrib><creatorcontrib>Huang, Jia-Bao</creatorcontrib><creatorcontrib>Zheng, Zhiqiong</creatorcontrib><creatorcontrib>Tao, Li-Zhen</creatorcontrib><title>Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differentiation is not well understood. Using a forward genetic screen, we isolated a mutant, defective primary root 2 (dpr2), defective in root apical meristem (RAM) maintenance. The DPR2 gene encodes phosphoethanolamine N-methyltransferase 1 (PEAMT1) that catalyzes phosphocholine biosynthesis in Arabidopsis. We characterized the primary root phenotypes of dpr2 using various marker lines, using histochemical and pharmacological analysis to probe early root development. Loss-of-function of DPR2/PEAMT1 resulted in RAM consumption by affecting root stem cell niche, division zone, elongation and differentiation zone (EDZ). PIN-FORMED (PIN) protein abundance, PIN2 polar distribution and general endocytosis were impaired in the root tip of dpr2. Excess hydrogen peroxide and auxin accumulate in the EDZ of dpr2, leading to RAM consumption by accelerating cell differentiation. Suppression of ROS over-accumulation or inhibition of auxin signalling partially prevent RAM differentiation in dpr2 after choline starvation. Taken together, we conclude that the EDZ of the root tip is most sensitive to choline shortage, leading to RAM consumption through an ROS–auxin regulation module.</description><subject>Arabidopsis</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>auxin</subject><subject>Auxins</subject><subject>Biosynthesis</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell division</subject><subject>Cell Division - drug effects</subject><subject>Choline</subject><subject>Choline - pharmacology</subject><subject>Consumption</subject><subject>Differentiation (biology)</subject><subject>Elongation</subject><subject>Endocytosis</subject><subject>Endocytosis - drug effects</subject><subject>Ethanolamines - metabolism</subject><subject>Genetic screening</subject><subject>Hydrogen peroxide</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Meristem - cytology</subject><subject>Meristem - drug effects</subject><subject>Meristems</subject><subject>Methyltransferase</subject><subject>Methyltransferases - metabolism</subject><subject>Microtubules - drug effects</subject><subject>Microtubules - metabolism</subject><subject>Mutation - genetics</subject><subject>Niches</subject><subject>Onium Compounds - pharmacology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phosphocholine</subject><subject>phosphoethanolamine N‐methyltransferase (PEAMT)</subject><subject>Reactive oxygen species</subject><subject>reactive oxygen species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regulators</subject><subject>root apical meristem (RAM)</subject><subject>Root development</subject><subject>Starvation</subject><subject>Stem cells</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhkVpaTbbHvoDWgS9pAcn-vDK0jGEtCmEJPQDejOz8jirxZZcSSbdH9T_WaWb5FCoDiNmeOZl4CHkDWfHvLwTP22OuWJCPyMLXitTaS6b52TByqhStfpxQA5T2jLGzEqJl-RAclErodmC_L7ZhDRtAuYN-DDA6DzSq2os_W7IEXzqMUJCyqkNPke3njMmmgMdwfmMHrxFGnoaQ8gUJmdhoCNGlzKOdL2j0Pdos_O39Mv1Vwq-ozD_cr6KeDsPkLGjFoeBdq5wEX12kF3w1Hl6GmHtujAll16RFz0MCV8__Evy_eP5t7OL6vL60-ez08vK1pzpSshGM8s4GqNXqlN6JaUVVkOvOIqeW5DKWGaUYLYztRGN4aIUgQZtb5VckqN97hTDzxlTbkeX7u8Dj2FOrRC1lrrWJXhJ3v-DbsMcfbmuUJpJWRToQn3YUzaGlCL27RTdCHHXctbeu2uLu_avu8K-e0ic1yN2T-SjrAKc7IE7N-Du_0nt1c3FY-Tb_cY25RCfNoRqGtM0Qv4BFj6vLA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Zou, Yi</creator><creator>Zhang, Xiaojing</creator><creator>Tan, Yunyi</creator><creator>Huang, Jia-Bao</creator><creator>Zheng, Zhiqiong</creator><creator>Tao, Li-Zhen</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4640-1793</orcidid></search><sort><creationdate>201910</creationdate><title>Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis</title><author>Zou, Yi ; Zhang, Xiaojing ; Tan, Yunyi ; Huang, Jia-Bao ; Zheng, Zhiqiong ; Tao, Li-Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-23780c01e99856d68533c2c8af61e2f1ca369c09620cd949279122792e9ecfc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>auxin</topic><topic>Auxins</topic><topic>Biosynthesis</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell division</topic><topic>Cell Division - drug effects</topic><topic>Choline</topic><topic>Choline - pharmacology</topic><topic>Consumption</topic><topic>Differentiation (biology)</topic><topic>Elongation</topic><topic>Endocytosis</topic><topic>Endocytosis - drug effects</topic><topic>Ethanolamines - metabolism</topic><topic>Genetic screening</topic><topic>Hydrogen peroxide</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Meristem - cytology</topic><topic>Meristem - drug effects</topic><topic>Meristems</topic><topic>Methyltransferase</topic><topic>Methyltransferases - metabolism</topic><topic>Microtubules - drug effects</topic><topic>Microtubules - metabolism</topic><topic>Mutation - genetics</topic><topic>Niches</topic><topic>Onium Compounds - pharmacology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phosphocholine</topic><topic>phosphoethanolamine N‐methyltransferase (PEAMT)</topic><topic>Reactive oxygen species</topic><topic>reactive oxygen species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regulators</topic><topic>root apical meristem (RAM)</topic><topic>Root development</topic><topic>Starvation</topic><topic>Stem cells</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Zhang, Xiaojing</creatorcontrib><creatorcontrib>Tan, Yunyi</creatorcontrib><creatorcontrib>Huang, Jia-Bao</creatorcontrib><creatorcontrib>Zheng, Zhiqiong</creatorcontrib><creatorcontrib>Tao, Li-Zhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yi</au><au>Zhang, Xiaojing</au><au>Tan, Yunyi</au><au>Huang, Jia-Bao</au><au>Zheng, Zhiqiong</au><au>Tao, Li-Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-10</date><risdate>2019</risdate><volume>224</volume><issue>1</issue><spage>258</spage><epage>273</epage><pages>258-273</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differentiation is not well understood. Using a forward genetic screen, we isolated a mutant, defective primary root 2 (dpr2), defective in root apical meristem (RAM) maintenance. The DPR2 gene encodes phosphoethanolamine N-methyltransferase 1 (PEAMT1) that catalyzes phosphocholine biosynthesis in Arabidopsis. We characterized the primary root phenotypes of dpr2 using various marker lines, using histochemical and pharmacological analysis to probe early root development. Loss-of-function of DPR2/PEAMT1 resulted in RAM consumption by affecting root stem cell niche, division zone, elongation and differentiation zone (EDZ). PIN-FORMED (PIN) protein abundance, PIN2 polar distribution and general endocytosis were impaired in the root tip of dpr2. Excess hydrogen peroxide and auxin accumulate in the EDZ of dpr2, leading to RAM consumption by accelerating cell differentiation. Suppression of ROS over-accumulation or inhibition of auxin signalling partially prevent RAM differentiation in dpr2 after choline starvation. Taken together, we conclude that the EDZ of the root tip is most sensitive to choline shortage, leading to RAM consumption through an ROS–auxin regulation module.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31246280</pmid><doi>10.1111/nph.16028</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4640-1793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-10, Vol.224 (1), p.258-273
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2248384885
source Wiley; JSTOR Archival Journals
subjects Arabidopsis
Arabidopsis - cytology
Arabidopsis - drug effects
Arabidopsis - enzymology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
auxin
Auxins
Biosynthesis
Cell differentiation
Cell Differentiation - drug effects
Cell division
Cell Division - drug effects
Choline
Choline - pharmacology
Consumption
Differentiation (biology)
Elongation
Endocytosis
Endocytosis - drug effects
Ethanolamines - metabolism
Genetic screening
Hydrogen peroxide
Indoleacetic Acids - pharmacology
Meristem - cytology
Meristem - drug effects
Meristems
Methyltransferase
Methyltransferases - metabolism
Microtubules - drug effects
Microtubules - metabolism
Mutation - genetics
Niches
Onium Compounds - pharmacology
Phenotype
Phenotypes
Phosphocholine
phosphoethanolamine N‐methyltransferase (PEAMT)
Reactive oxygen species
reactive oxygen species (ROS)
Reactive Oxygen Species - metabolism
Regulators
root apical meristem (RAM)
Root development
Starvation
Stem cells
Stem Cells - drug effects
Stem Cells - metabolism
title Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphoethanolamine%20N-methyltransferase%201%20contributes%20to%20maintenance%20of%20root%20apical%20meristem%20by%20affecting%20ROS%20and%20auxin-regulated%20cell%20differentiation%20in%20Arabidopsis&rft.jtitle=The%20New%20phytologist&rft.au=Zou,%20Yi&rft.date=2019-10&rft.volume=224&rft.issue=1&rft.spage=258&rft.epage=273&rft.pages=258-273&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16028&rft_dat=%3Cjstor_proqu%3E26779772%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4108-23780c01e99856d68533c2c8af61e2f1ca369c09620cd949279122792e9ecfc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2280331378&rft_id=info:pmid/31246280&rft_jstor_id=26779772&rfr_iscdi=true