Loading…

Linking Low-Coordinate Ge(II) Centers via Bridging Anionic N‑Heterocyclic Olefin Ligands

We introduce a large-scale synthesis of a sterically encumbered N-heterocyclic olefin (NHO) and illustrate the ability of its deprotonated form to act as an anionic four-electron bridging ligand. The resulting multicenter donating ability has been used to link two low oxidation state Ge­(II) centers...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2020-02, Vol.59 (3), p.1592-1601
Main Authors: Hupf, Emanuel, Kaiser, Felix, Lummis, Paul A, Roy, Matthew M. D, McDonald, Robert, Ferguson, Michael J, Kühn, Fritz E, Rivard, Eric
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a large-scale synthesis of a sterically encumbered N-heterocyclic olefin (NHO) and illustrate the ability of its deprotonated form to act as an anionic four-electron bridging ligand. The resulting multicenter donating ability has been used to link two low oxidation state Ge­(II) centers in close proximity, leading to bridging Ge–Cl–Ge and Ge–H–Ge bonding environments supported by Ge2C2 heterocyclic manifolds. Reduction of a dimeric [RGeCl]2 species (R = anionic NHO, [(MeCNDipp)2CCH]−; Dipp = 2,6-iPr2C6H3) did not give the expected acyclic RGeGeR analogue of an alkyne, but rather ligand migration/disproportionation transpired to yield the known diorganogermylene R2Ge and Ge metal. This process was examined computationally, and the ability of the reported anionic NHO to undergo atom migration chemistry contrasts with what is typically found with bulky monoanionic ligands (such as terphenyl ligands).
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.9b01449