Loading…
Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex
ABSTRACT The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biti...
Saved in:
Published in: | Anatomical record (Hoboken, N.J. : 2007) N.J. : 2007), 2020-04, Vol.303 (4), p.999-1017 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43 |
container_end_page | 1017 |
container_issue | 4 |
container_start_page | 999 |
container_title | Anatomical record (Hoboken, N.J. : 2007) |
container_volume | 303 |
creator | Cost, Ian N. Middleton, Kevin M. Sellers, Kaleb C. Echols, Michael Scott Witmer, Lawrence M. Davis, Julian L. Holliday, Casey M. |
description | ABSTRACT
The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/ar.24219 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2250620188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375617081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</originalsourceid><addsrcrecordid>eNp1kNtKAzEQhoMoWg_gE0jAG2-2TpI9JJe1eCgWlKrXIZsmmrLN1qSL9u2NVisIXs0wfHz88yN0TKBPAOi5Cn2aUyK2UI8IRjOei3x7s_NyD-3HOAMochBsF-0xQksgAnpocq8atVQNvnDt3OgX5Z2OWPkpHi0jfnDP3lmnldcG2zbgYUhAom-dN9FF7Dx-XKWbb6PqQhdxMO-HaMeqJpqj73mAnq4uH4c32fjuejQcjDPNOBOZra3lRhekYjmleSk0WJPiCTUtIKdQFekJzetaEM1KsBVllVBQ18YA5SpnB-hs7V2E9rUzcSnnLmrTNMqbtouS0gJKCoTzhJ7-QWdtF3xKJ5O1KEkFnPwKdWhjDMbKRXBzFVaSgPzsWaogv3pO6Mm3sKvnZroBf4pNQLYG3lxjVv-K5GCyFn4AoHiECQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375617081</pqid></control><display><type>article</type><title>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</title><source>Wiley</source><creator>Cost, Ian N. ; Middleton, Kevin M. ; Sellers, Kaleb C. ; Echols, Michael Scott ; Witmer, Lawrence M. ; Davis, Julian L. ; Holliday, Casey M.</creator><creatorcontrib>Cost, Ian N. ; Middleton, Kevin M. ; Sellers, Kaleb C. ; Echols, Michael Scott ; Witmer, Lawrence M. ; Davis, Julian L. ; Holliday, Casey M.</creatorcontrib><description>ABSTRACT
The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.</description><identifier>ISSN: 1932-8486</identifier><identifier>EISSN: 1932-8494</identifier><identifier>DOI: 10.1002/ar.24219</identifier><identifier>PMID: 31260190</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Biomechanical Phenomena - physiology ; Biomechanics ; bird ; Bite Force ; Biting ; cranial kinesis ; Dinosaurs ; Dinosaurs - anatomy & histology ; Dinosaurs - physiology ; finite element model ; Fossils ; Jaw ; jaw muscles ; Kinesis ; lizard ; Mathematical models ; Mimicry ; Movement - physiology ; Muscles ; Palate ; Palate - anatomy & histology ; Palate - physiology ; Phylogenetics ; Phylogeny ; Posture ; Sensitivity analysis ; Skull ; Skull - anatomy & histology ; Skull - physiology ; Tyrannosaurus ; Tyrannosaurus rex</subject><ispartof>Anatomical record (Hoboken, N.J. : 2007), 2020-04, Vol.303 (4), p.999-1017</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</citedby><cites>FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</cites><orcidid>0000-0001-8210-8434 ; 0000-0002-5087-6823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31260190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cost, Ian N.</creatorcontrib><creatorcontrib>Middleton, Kevin M.</creatorcontrib><creatorcontrib>Sellers, Kaleb C.</creatorcontrib><creatorcontrib>Echols, Michael Scott</creatorcontrib><creatorcontrib>Witmer, Lawrence M.</creatorcontrib><creatorcontrib>Davis, Julian L.</creatorcontrib><creatorcontrib>Holliday, Casey M.</creatorcontrib><title>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</title><title>Anatomical record (Hoboken, N.J. : 2007)</title><addtitle>Anat Rec (Hoboken)</addtitle><description>ABSTRACT
The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>bird</subject><subject>Bite Force</subject><subject>Biting</subject><subject>cranial kinesis</subject><subject>Dinosaurs</subject><subject>Dinosaurs - anatomy & histology</subject><subject>Dinosaurs - physiology</subject><subject>finite element model</subject><subject>Fossils</subject><subject>Jaw</subject><subject>jaw muscles</subject><subject>Kinesis</subject><subject>lizard</subject><subject>Mathematical models</subject><subject>Mimicry</subject><subject>Movement - physiology</subject><subject>Muscles</subject><subject>Palate</subject><subject>Palate - anatomy & histology</subject><subject>Palate - physiology</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Posture</subject><subject>Sensitivity analysis</subject><subject>Skull</subject><subject>Skull - anatomy & histology</subject><subject>Skull - physiology</subject><subject>Tyrannosaurus</subject><subject>Tyrannosaurus rex</subject><issn>1932-8486</issn><issn>1932-8494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kNtKAzEQhoMoWg_gE0jAG2-2TpI9JJe1eCgWlKrXIZsmmrLN1qSL9u2NVisIXs0wfHz88yN0TKBPAOi5Cn2aUyK2UI8IRjOei3x7s_NyD-3HOAMochBsF-0xQksgAnpocq8atVQNvnDt3OgX5Z2OWPkpHi0jfnDP3lmnldcG2zbgYUhAom-dN9FF7Dx-XKWbb6PqQhdxMO-HaMeqJpqj73mAnq4uH4c32fjuejQcjDPNOBOZra3lRhekYjmleSk0WJPiCTUtIKdQFekJzetaEM1KsBVllVBQ18YA5SpnB-hs7V2E9rUzcSnnLmrTNMqbtouS0gJKCoTzhJ7-QWdtF3xKJ5O1KEkFnPwKdWhjDMbKRXBzFVaSgPzsWaogv3pO6Mm3sKvnZroBf4pNQLYG3lxjVv-K5GCyFn4AoHiECQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Cost, Ian N.</creator><creator>Middleton, Kevin M.</creator><creator>Sellers, Kaleb C.</creator><creator>Echols, Michael Scott</creator><creator>Witmer, Lawrence M.</creator><creator>Davis, Julian L.</creator><creator>Holliday, Casey M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8210-8434</orcidid><orcidid>https://orcid.org/0000-0002-5087-6823</orcidid></search><sort><creationdate>202004</creationdate><title>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</title><author>Cost, Ian N. ; Middleton, Kevin M. ; Sellers, Kaleb C. ; Echols, Michael Scott ; Witmer, Lawrence M. ; Davis, Julian L. ; Holliday, Casey M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>bird</topic><topic>Bite Force</topic><topic>Biting</topic><topic>cranial kinesis</topic><topic>Dinosaurs</topic><topic>Dinosaurs - anatomy & histology</topic><topic>Dinosaurs - physiology</topic><topic>finite element model</topic><topic>Fossils</topic><topic>Jaw</topic><topic>jaw muscles</topic><topic>Kinesis</topic><topic>lizard</topic><topic>Mathematical models</topic><topic>Mimicry</topic><topic>Movement - physiology</topic><topic>Muscles</topic><topic>Palate</topic><topic>Palate - anatomy & histology</topic><topic>Palate - physiology</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Posture</topic><topic>Sensitivity analysis</topic><topic>Skull</topic><topic>Skull - anatomy & histology</topic><topic>Skull - physiology</topic><topic>Tyrannosaurus</topic><topic>Tyrannosaurus rex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cost, Ian N.</creatorcontrib><creatorcontrib>Middleton, Kevin M.</creatorcontrib><creatorcontrib>Sellers, Kaleb C.</creatorcontrib><creatorcontrib>Echols, Michael Scott</creatorcontrib><creatorcontrib>Witmer, Lawrence M.</creatorcontrib><creatorcontrib>Davis, Julian L.</creatorcontrib><creatorcontrib>Holliday, Casey M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cost, Ian N.</au><au>Middleton, Kevin M.</au><au>Sellers, Kaleb C.</au><au>Echols, Michael Scott</au><au>Witmer, Lawrence M.</au><au>Davis, Julian L.</au><au>Holliday, Casey M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</atitle><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle><addtitle>Anat Rec (Hoboken)</addtitle><date>2020-04</date><risdate>2020</risdate><volume>303</volume><issue>4</issue><spage>999</spage><epage>1017</epage><pages>999-1017</pages><issn>1932-8486</issn><eissn>1932-8494</eissn><abstract>ABSTRACT
The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31260190</pmid><doi>10.1002/ar.24219</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8210-8434</orcidid><orcidid>https://orcid.org/0000-0002-5087-6823</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-8486 |
ispartof | Anatomical record (Hoboken, N.J. : 2007), 2020-04, Vol.303 (4), p.999-1017 |
issn | 1932-8486 1932-8494 |
language | eng |
recordid | cdi_proquest_miscellaneous_2250620188 |
source | Wiley |
subjects | Animals Biomechanical Phenomena - physiology Biomechanics bird Bite Force Biting cranial kinesis Dinosaurs Dinosaurs - anatomy & histology Dinosaurs - physiology finite element model Fossils Jaw jaw muscles Kinesis lizard Mathematical models Mimicry Movement - physiology Muscles Palate Palate - anatomy & histology Palate - physiology Phylogenetics Phylogeny Posture Sensitivity analysis Skull Skull - anatomy & histology Skull - physiology Tyrannosaurus Tyrannosaurus rex |
title | Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Palatal%20Biomechanics%20and%20Its%20Significance%20for%20Cranial%20Kinesis%20in%20Tyrannosaurus%20rex&rft.jtitle=Anatomical%20record%20(Hoboken,%20N.J.%20:%202007)&rft.au=Cost,%20Ian%20N.&rft.date=2020-04&rft.volume=303&rft.issue=4&rft.spage=999&rft.epage=1017&rft.pages=999-1017&rft.issn=1932-8486&rft.eissn=1932-8494&rft_id=info:doi/10.1002/ar.24219&rft_dat=%3Cproquest_cross%3E2375617081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375617081&rft_id=info:pmid/31260190&rfr_iscdi=true |