Loading…

Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex

ABSTRACT The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biti...

Full description

Saved in:
Bibliographic Details
Published in:Anatomical record (Hoboken, N.J. : 2007) N.J. : 2007), 2020-04, Vol.303 (4), p.999-1017
Main Authors: Cost, Ian N., Middleton, Kevin M., Sellers, Kaleb C., Echols, Michael Scott, Witmer, Lawrence M., Davis, Julian L., Holliday, Casey M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43
cites cdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43
container_end_page 1017
container_issue 4
container_start_page 999
container_title Anatomical record (Hoboken, N.J. : 2007)
container_volume 303
creator Cost, Ian N.
Middleton, Kevin M.
Sellers, Kaleb C.
Echols, Michael Scott
Witmer, Lawrence M.
Davis, Julian L.
Holliday, Casey M.
description ABSTRACT The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.
doi_str_mv 10.1002/ar.24219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2250620188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375617081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</originalsourceid><addsrcrecordid>eNp1kNtKAzEQhoMoWg_gE0jAG2-2TpI9JJe1eCgWlKrXIZsmmrLN1qSL9u2NVisIXs0wfHz88yN0TKBPAOi5Cn2aUyK2UI8IRjOei3x7s_NyD-3HOAMochBsF-0xQksgAnpocq8atVQNvnDt3OgX5Z2OWPkpHi0jfnDP3lmnldcG2zbgYUhAom-dN9FF7Dx-XKWbb6PqQhdxMO-HaMeqJpqj73mAnq4uH4c32fjuejQcjDPNOBOZra3lRhekYjmleSk0WJPiCTUtIKdQFekJzetaEM1KsBVllVBQ18YA5SpnB-hs7V2E9rUzcSnnLmrTNMqbtouS0gJKCoTzhJ7-QWdtF3xKJ5O1KEkFnPwKdWhjDMbKRXBzFVaSgPzsWaogv3pO6Mm3sKvnZroBf4pNQLYG3lxjVv-K5GCyFn4AoHiECQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375617081</pqid></control><display><type>article</type><title>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</title><source>Wiley</source><creator>Cost, Ian N. ; Middleton, Kevin M. ; Sellers, Kaleb C. ; Echols, Michael Scott ; Witmer, Lawrence M. ; Davis, Julian L. ; Holliday, Casey M.</creator><creatorcontrib>Cost, Ian N. ; Middleton, Kevin M. ; Sellers, Kaleb C. ; Echols, Michael Scott ; Witmer, Lawrence M. ; Davis, Julian L. ; Holliday, Casey M.</creatorcontrib><description>ABSTRACT The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.</description><identifier>ISSN: 1932-8486</identifier><identifier>EISSN: 1932-8494</identifier><identifier>DOI: 10.1002/ar.24219</identifier><identifier>PMID: 31260190</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Biomechanical Phenomena - physiology ; Biomechanics ; bird ; Bite Force ; Biting ; cranial kinesis ; Dinosaurs ; Dinosaurs - anatomy &amp; histology ; Dinosaurs - physiology ; finite element model ; Fossils ; Jaw ; jaw muscles ; Kinesis ; lizard ; Mathematical models ; Mimicry ; Movement - physiology ; Muscles ; Palate ; Palate - anatomy &amp; histology ; Palate - physiology ; Phylogenetics ; Phylogeny ; Posture ; Sensitivity analysis ; Skull ; Skull - anatomy &amp; histology ; Skull - physiology ; Tyrannosaurus ; Tyrannosaurus rex</subject><ispartof>Anatomical record (Hoboken, N.J. : 2007), 2020-04, Vol.303 (4), p.999-1017</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</citedby><cites>FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</cites><orcidid>0000-0001-8210-8434 ; 0000-0002-5087-6823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31260190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cost, Ian N.</creatorcontrib><creatorcontrib>Middleton, Kevin M.</creatorcontrib><creatorcontrib>Sellers, Kaleb C.</creatorcontrib><creatorcontrib>Echols, Michael Scott</creatorcontrib><creatorcontrib>Witmer, Lawrence M.</creatorcontrib><creatorcontrib>Davis, Julian L.</creatorcontrib><creatorcontrib>Holliday, Casey M.</creatorcontrib><title>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</title><title>Anatomical record (Hoboken, N.J. : 2007)</title><addtitle>Anat Rec (Hoboken)</addtitle><description>ABSTRACT The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>bird</subject><subject>Bite Force</subject><subject>Biting</subject><subject>cranial kinesis</subject><subject>Dinosaurs</subject><subject>Dinosaurs - anatomy &amp; histology</subject><subject>Dinosaurs - physiology</subject><subject>finite element model</subject><subject>Fossils</subject><subject>Jaw</subject><subject>jaw muscles</subject><subject>Kinesis</subject><subject>lizard</subject><subject>Mathematical models</subject><subject>Mimicry</subject><subject>Movement - physiology</subject><subject>Muscles</subject><subject>Palate</subject><subject>Palate - anatomy &amp; histology</subject><subject>Palate - physiology</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Posture</subject><subject>Sensitivity analysis</subject><subject>Skull</subject><subject>Skull - anatomy &amp; histology</subject><subject>Skull - physiology</subject><subject>Tyrannosaurus</subject><subject>Tyrannosaurus rex</subject><issn>1932-8486</issn><issn>1932-8494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kNtKAzEQhoMoWg_gE0jAG2-2TpI9JJe1eCgWlKrXIZsmmrLN1qSL9u2NVisIXs0wfHz88yN0TKBPAOi5Cn2aUyK2UI8IRjOei3x7s_NyD-3HOAMochBsF-0xQksgAnpocq8atVQNvnDt3OgX5Z2OWPkpHi0jfnDP3lmnldcG2zbgYUhAom-dN9FF7Dx-XKWbb6PqQhdxMO-HaMeqJpqj73mAnq4uH4c32fjuejQcjDPNOBOZra3lRhekYjmleSk0WJPiCTUtIKdQFekJzetaEM1KsBVllVBQ18YA5SpnB-hs7V2E9rUzcSnnLmrTNMqbtouS0gJKCoTzhJ7-QWdtF3xKJ5O1KEkFnPwKdWhjDMbKRXBzFVaSgPzsWaogv3pO6Mm3sKvnZroBf4pNQLYG3lxjVv-K5GCyFn4AoHiECQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Cost, Ian N.</creator><creator>Middleton, Kevin M.</creator><creator>Sellers, Kaleb C.</creator><creator>Echols, Michael Scott</creator><creator>Witmer, Lawrence M.</creator><creator>Davis, Julian L.</creator><creator>Holliday, Casey M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8210-8434</orcidid><orcidid>https://orcid.org/0000-0002-5087-6823</orcidid></search><sort><creationdate>202004</creationdate><title>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</title><author>Cost, Ian N. ; Middleton, Kevin M. ; Sellers, Kaleb C. ; Echols, Michael Scott ; Witmer, Lawrence M. ; Davis, Julian L. ; Holliday, Casey M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>bird</topic><topic>Bite Force</topic><topic>Biting</topic><topic>cranial kinesis</topic><topic>Dinosaurs</topic><topic>Dinosaurs - anatomy &amp; histology</topic><topic>Dinosaurs - physiology</topic><topic>finite element model</topic><topic>Fossils</topic><topic>Jaw</topic><topic>jaw muscles</topic><topic>Kinesis</topic><topic>lizard</topic><topic>Mathematical models</topic><topic>Mimicry</topic><topic>Movement - physiology</topic><topic>Muscles</topic><topic>Palate</topic><topic>Palate - anatomy &amp; histology</topic><topic>Palate - physiology</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Posture</topic><topic>Sensitivity analysis</topic><topic>Skull</topic><topic>Skull - anatomy &amp; histology</topic><topic>Skull - physiology</topic><topic>Tyrannosaurus</topic><topic>Tyrannosaurus rex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cost, Ian N.</creatorcontrib><creatorcontrib>Middleton, Kevin M.</creatorcontrib><creatorcontrib>Sellers, Kaleb C.</creatorcontrib><creatorcontrib>Echols, Michael Scott</creatorcontrib><creatorcontrib>Witmer, Lawrence M.</creatorcontrib><creatorcontrib>Davis, Julian L.</creatorcontrib><creatorcontrib>Holliday, Casey M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cost, Ian N.</au><au>Middleton, Kevin M.</au><au>Sellers, Kaleb C.</au><au>Echols, Michael Scott</au><au>Witmer, Lawrence M.</au><au>Davis, Julian L.</au><au>Holliday, Casey M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex</atitle><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle><addtitle>Anat Rec (Hoboken)</addtitle><date>2020-04</date><risdate>2020</risdate><volume>303</volume><issue>4</issue><spage>999</spage><epage>1017</epage><pages>999-1017</pages><issn>1932-8486</issn><eissn>1932-8494</eissn><abstract>ABSTRACT The extinct nonavian dinosaur Tyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis in T. rex is a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency in Tyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions: Psittacus erithacus (fore–aft movement) and Gekko gecko (mediolateral movement). Static finite element models of Psittacus, Gekko, and Tyrannosaurus were constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models of Tyrannosaurus experienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull of Tyrannosaurus was functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31260190</pmid><doi>10.1002/ar.24219</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8210-8434</orcidid><orcidid>https://orcid.org/0000-0002-5087-6823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-8486
ispartof Anatomical record (Hoboken, N.J. : 2007), 2020-04, Vol.303 (4), p.999-1017
issn 1932-8486
1932-8494
language eng
recordid cdi_proquest_miscellaneous_2250620188
source Wiley
subjects Animals
Biomechanical Phenomena - physiology
Biomechanics
bird
Bite Force
Biting
cranial kinesis
Dinosaurs
Dinosaurs - anatomy & histology
Dinosaurs - physiology
finite element model
Fossils
Jaw
jaw muscles
Kinesis
lizard
Mathematical models
Mimicry
Movement - physiology
Muscles
Palate
Palate - anatomy & histology
Palate - physiology
Phylogenetics
Phylogeny
Posture
Sensitivity analysis
Skull
Skull - anatomy & histology
Skull - physiology
Tyrannosaurus
Tyrannosaurus rex
title Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Palatal%20Biomechanics%20and%20Its%20Significance%20for%20Cranial%20Kinesis%20in%20Tyrannosaurus%20rex&rft.jtitle=Anatomical%20record%20(Hoboken,%20N.J.%20:%202007)&rft.au=Cost,%20Ian%20N.&rft.date=2020-04&rft.volume=303&rft.issue=4&rft.spage=999&rft.epage=1017&rft.pages=999-1017&rft.issn=1932-8486&rft.eissn=1932-8494&rft_id=info:doi/10.1002/ar.24219&rft_dat=%3Cproquest_cross%3E2375617081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3839-fbff8ec5173422469c0fe0939ad5042075494c8bb91c360f72379a0bbee028a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375617081&rft_id=info:pmid/31260190&rfr_iscdi=true