Loading…
Design of an ultrasound chamber for cellular excitation and observation
In this work, a design of integrating ultrasonic transduction with live cell imaging chamber is introduced. The principle of a metal-incident-glass-output acoustic path was used to deliver a uniform energy profile into the imaging/incubation chamber in the form of leaky Lamb waves. The design was ap...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2019-06, Vol.145 (6), p.EL547-EL553 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, a design of integrating ultrasonic transduction with live cell imaging chamber is introduced. The principle of a metal-incident-glass-output acoustic path was used to deliver a uniform energy profile into the imaging/incubation chamber in the form of leaky Lamb waves. The design was applied to examine living mouse mammary gland epithelial cells (EpH4). Significant changes in intracellular activities were observed even at a very low energy intensity level (1 MHz, ISATA = 1 mW/cm2, continuous wave). Live imaging with ultrasonic stimulation provides a different paradigm to interrogate cellular mechanosensitive responses in real time. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.5111974 |