Loading…

Heme oxygenase-1 attenuates seawater drowning-induced acute lung injury through a reduction in inflammation and oxidative stress

Heme oxygenase-1 (HO-1) plays a critical protective role in various insults-induced acute lung injury (ALI) through its strong anti-inflammatory, anti-oxidant, and anti-apoptotic properties, but its protective role and mechanism on seawater aspiration-induced acute lung injury remains unclear. This...

Full description

Saved in:
Bibliographic Details
Published in:International immunopharmacology 2019-09, Vol.74, p.105634-105634, Article 105634
Main Authors: Sun, Xue-qian, Wu, Chen, Qiu, Yu-bao, Wu, Ya-Xian, Chen, Jun-liang, Huang, Jian-feng, Chen, Dan, Pang, Qing-feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heme oxygenase-1 (HO-1) plays a critical protective role in various insults-induced acute lung injury (ALI) through its strong anti-inflammatory, anti-oxidant, and anti-apoptotic properties, but its protective role and mechanism on seawater aspiration-induced acute lung injury remains unclear. This study aimed to explore the therapeutic potential and mechanism of HO-1 to attenuate seawater aspiration-induced ALI in vivo and in vitro. The viability and invasion of A549 cell were analyzed through cell counting kit-8 and lactate dehydrogenase release assay; the transcriptional level of inflammatory cytokines (TNF-α, IL-6, IL-8 and MCP-1) and cell proliferation-related cytokines (FoxM1, Ccnb1 and Cdc25C) in seawater-treated A549 cell were tested by qPCR; apoptotic cells were analyzed by flow cytometryd; HO-1mRNA and protein were determined by qPCR and western blotting; the fluorescent indicators (DCFH-DA, dihydroethidium, MitoSox Red and Fluo-4) were used to monitor generation of ROS and mitochondrial function. The lung wet/dry weight radio and lactate dehydrogenase activity, Sirius red staining, TUNEL assay and immunohistochemical staining with anti-pan Cytokeratin antibody were analyzed in seawater-drowning mice. The role of HO-1 on seawater-drowning pulmonary injury was explored via HO-1 activity inhibitors (Zinc protoporphyrin) in vitro and in vivo. Seawater exposure decreased the cellular viability, increased the production of pro-inflammatory cytokines (IL-6, IL-8 and TNF-α), induced cellular apoptosis and inhibited the expression of cell proliferation-related cytokines (FoxM1, Ccnb1 and Cdc25C). Moreover, seawater exposure led to mitochondrial dysfunction in A549 cells. Supplement of HO-1 sepcific inducer (heme) or its catalytic product (biliverdin) significantly attenuated seawater-induced A549 damage and promoted cell proliferation. However, Zinc protoporphyrin abolished the beneficial effects of HO-1 on seawater drowning-induced pulmonary tissue injury. HO-1 attenuates seawater drowning-induced lung injury by its anti-inflammatory, anti-oxidative, and anti-apoptosis function. •Seawater exposure increased the production of pro-inflammatory cytokines and induced cell apoptosis.•Seawater exposure inhibited the expression of cell proliferation-related cytokines and led to mitochondrial dysfunction.•Heme or biliverdin attenuated seawater-induced A549 damage and promoted cell proliferation.•Zinc protoporphyrin abolished the beneficial effects of HO-1 on se
ISSN:1567-5769
1878-1705
DOI:10.1016/j.intimp.2019.05.019