Loading…
Extraordinary Role of Bi for Improving Thermoelectrics in Low-Solubility SnTe–CdTe Alloys
As an environment-friendly alternative to traditional PbTe, many attempts have recently been made to improve thermoelectric SnTe. Effective strategies are mainly focused on valence band convergence, nanostructuring, interstitial defects, and alloying solubility. In particular, alloying SnTe with CdT...
Saved in:
Published in: | ACS applied materials & interfaces 2019-07, Vol.11 (29), p.26093-26099 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As an environment-friendly alternative to traditional PbTe, many attempts have recently been made to improve thermoelectric SnTe. Effective strategies are mainly focused on valence band convergence, nanostructuring, interstitial defects, and alloying solubility. In particular, alloying SnTe with CdTe/GeTe triggers an inherent decline of valence band offset effectively owing to a high solubility of ∼20% of CdTe. However, to what level an additional element doping in low-solubility SnTe–CdTe alloys can play a role in enhancing the thermoelectric performance still remains a mystery. Here, a new strategy is shown that unexpected Bi doping, by alloying with only ∼3% CdTe, induces a significant enhancement of the thermoelectric figure of merit ZT to be ∼240% (ZT up to ∼1.3) at 838 K, which is mainly determined by the dramatically reduced lattice thermal conductivity above 800 K deriving from the exotic Bi doping and Cu-interstitial defects. More interestingly, combining experimental and theoretical evidences, the Bi-doping-driven band convergence is also beneficial to the improvement of thermoelectric performance below 800 K. The present findings demonstrate the extraordinary role of Bi for advancing the thermoelectric performance in SnTe alloys. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b07222 |