Loading…

Alkaline phosphatase activities and regulation in three harmful Prorocentrum species from the coastal waters of the East China Sea

Harmful blooms of Prorocentrum donghaiense occur annually in the phosphorus-scarce coastal waters of the East China Sea (ECS). The enzymatic activities of alkaline phosphatase (AP) and its regulation by external phosphorus were studied during a P. donghaiense bloom in this area. The AP characteristi...

Full description

Saved in:
Bibliographic Details
Published in:Microbial ecology 2020-02, Vol.79 (2), p.459-471
Main Authors: Ou, Linjian, Qin, Xianling, Shi, Xiaoyong, Feng, Qingliang, Zhang, Shuwen, Lu, Songhui, Qi, Yuzao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Harmful blooms of Prorocentrum donghaiense occur annually in the phosphorus-scarce coastal waters of the East China Sea (ECS). The enzymatic activities of alkaline phosphatase (AP) and its regulation by external phosphorus were studied during a P. donghaiense bloom in this area. The AP characteristics of P. donghaiense was further compared with Prorocentrum minimum and Prorocentrum micans in monocultures with both bulk and single-cell enzyme-labeled fluorescence AP assays. Concentrations of dissolved inorganic phosphorus (DIP) varied between 0.04 and 0.73 µmol l⁻¹, with more than half recording stations registering concentrations below 0.10 µmol l⁻¹. Concentrations of dissolved organic phosphorus (DOP) were comparable or even higher than those of DIP. P. donghaiense suffered phosphorus stress and expressed abundant AP, especially when DIP was lower than 0.10 µmol l⁻¹. The AP activities showed a negative correlation with DIP but a positive correlation with DOP. The AP activities were also regulated by internal phosphorus pool. The sharp increase in AP activities was observed until cellular phosphorus was exhausted. Most AP of P. donghaiense was located on the cell surface and some were released into the water with time. Compared with P. minimum and P. micans, P. donghaiense showed a higher AP affinity for organic phosphorus substrates, a more efficient and energy-saving AP expression quantity as a response to phosphorus deficiency. The unique AP characteristic of P. donghaiense suggests that it benefits from the efficient utilization of DOP, and outcompete other species in the phosphorus-scarce ECS.
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-019-01399-3