Loading…

Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate

The decomposition of isopropyl nitrate was measured behind incident shock waves using laser schlieren densitometry in a diaphragmless shock tube. Experiments were conducted over the temperature range of 700–1000 K and at pressures of 71, 126, and 240 Torr. Electronic structure theory and RRKM Master...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2019-07, Vol.123 (28), p.5866-5876
Main Authors: Fuller, Mark E, Goldsmith, C. Franklin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a336t-56b26e74befd5f36c4093c2f331437f525824f149ff54e7de85465c260d514f83
cites cdi_FETCH-LOGICAL-a336t-56b26e74befd5f36c4093c2f331437f525824f149ff54e7de85465c260d514f83
container_end_page 5876
container_issue 28
container_start_page 5866
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 123
creator Fuller, Mark E
Goldsmith, C. Franklin
description The decomposition of isopropyl nitrate was measured behind incident shock waves using laser schlieren densitometry in a diaphragmless shock tube. Experiments were conducted over the temperature range of 700–1000 K and at pressures of 71, 126, and 240 Torr. Electronic structure theory and RRKM Master Equation methods were used to predict the decomposition kinetics. RRKM/ME parameters were optimized against the experimental data to provide an accurate prediction over a broader range of conditions. The initial decomposition i-C3H7ONO2 ⇌ i-C3H7O + NO2 has a high-pressure limit rate coefficient of 5.70 × 1022 T –1.80 exp­[−21287.5/T] s–1. A new chemical kinetic mechanism was developed to model the chemistry after the initial dissociation. A new shock tube module was developed for Cantera, which allows for arbitrarily large mechanisms in the simulation of laser schlieren experiments. The present work is in good agreement with previous experimental studies.
doi_str_mv 10.1021/acs.jpca.9b03325
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2251699825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251699825</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-56b26e74befd5f36c4093c2f331437f525824f149ff54e7de85465c260d514f83</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqWwMyGPDLT4M41HhChUqgCpZbYc56ympHWwkyH_PS4tbEx3Or337u6H0DUlE0oYvTc2TjaNNRNVEM6ZPEFDKhkZS0blaepJrsYy42qALmLcEEIoZ-IcDTilimWEDdFsufb2E6-6AvDCRAh4add1BQF2eNl2ZY-9w-0a8HsffN3HKu4H8-ib4Ju-xq9VG0wLl-jMmTrC1bGO0MfsafX4Ml68Pc8fHxZjw3nWplsKlsFUFOBK6XhmBVHcMsc5FXzqJJM5E44K5ZwUMC0hlyKTNp1aSipczkfo9pCb1n91EFu9raKFujY78F3UjEmaKZUzmaTkILXBxxjA6SZUWxN6TYne09OJnt7T00d6yXJzTO-KLZR_hl9cSXB3EPxYfRd26dn_874Bx7x57g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251699825</pqid></control><display><type>article</type><title>Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Fuller, Mark E ; Goldsmith, C. Franklin</creator><creatorcontrib>Fuller, Mark E ; Goldsmith, C. Franklin</creatorcontrib><description>The decomposition of isopropyl nitrate was measured behind incident shock waves using laser schlieren densitometry in a diaphragmless shock tube. Experiments were conducted over the temperature range of 700–1000 K and at pressures of 71, 126, and 240 Torr. Electronic structure theory and RRKM Master Equation methods were used to predict the decomposition kinetics. RRKM/ME parameters were optimized against the experimental data to provide an accurate prediction over a broader range of conditions. The initial decomposition i-C3H7ONO2 ⇌ i-C3H7O + NO2 has a high-pressure limit rate coefficient of 5.70 × 1022 T –1.80 exp­[−21287.5/T] s–1. A new chemical kinetic mechanism was developed to model the chemistry after the initial dissociation. A new shock tube module was developed for Cantera, which allows for arbitrarily large mechanisms in the simulation of laser schlieren experiments. The present work is in good agreement with previous experimental studies.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.9b03325</identifier><identifier>PMID: 31192602</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2019-07, Vol.123 (28), p.5866-5876</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-56b26e74befd5f36c4093c2f331437f525824f149ff54e7de85465c260d514f83</citedby><cites>FETCH-LOGICAL-a336t-56b26e74befd5f36c4093c2f331437f525824f149ff54e7de85465c260d514f83</cites><orcidid>0000-0002-2212-0172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31192602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuller, Mark E</creatorcontrib><creatorcontrib>Goldsmith, C. Franklin</creatorcontrib><title>Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The decomposition of isopropyl nitrate was measured behind incident shock waves using laser schlieren densitometry in a diaphragmless shock tube. Experiments were conducted over the temperature range of 700–1000 K and at pressures of 71, 126, and 240 Torr. Electronic structure theory and RRKM Master Equation methods were used to predict the decomposition kinetics. RRKM/ME parameters were optimized against the experimental data to provide an accurate prediction over a broader range of conditions. The initial decomposition i-C3H7ONO2 ⇌ i-C3H7O + NO2 has a high-pressure limit rate coefficient of 5.70 × 1022 T –1.80 exp­[−21287.5/T] s–1. A new chemical kinetic mechanism was developed to model the chemistry after the initial dissociation. A new shock tube module was developed for Cantera, which allows for arbitrarily large mechanisms in the simulation of laser schlieren experiments. The present work is in good agreement with previous experimental studies.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqWwMyGPDLT4M41HhChUqgCpZbYc56ympHWwkyH_PS4tbEx3Or337u6H0DUlE0oYvTc2TjaNNRNVEM6ZPEFDKhkZS0blaepJrsYy42qALmLcEEIoZ-IcDTilimWEDdFsufb2E6-6AvDCRAh4add1BQF2eNl2ZY-9w-0a8HsffN3HKu4H8-ib4Ju-xq9VG0wLl-jMmTrC1bGO0MfsafX4Ml68Pc8fHxZjw3nWplsKlsFUFOBK6XhmBVHcMsc5FXzqJJM5E44K5ZwUMC0hlyKTNp1aSipczkfo9pCb1n91EFu9raKFujY78F3UjEmaKZUzmaTkILXBxxjA6SZUWxN6TYne09OJnt7T00d6yXJzTO-KLZR_hl9cSXB3EPxYfRd26dn_874Bx7x57g</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Fuller, Mark E</creator><creator>Goldsmith, C. Franklin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid></search><sort><creationdate>20190718</creationdate><title>Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate</title><author>Fuller, Mark E ; Goldsmith, C. Franklin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-56b26e74befd5f36c4093c2f331437f525824f149ff54e7de85465c260d514f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuller, Mark E</creatorcontrib><creatorcontrib>Goldsmith, C. Franklin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuller, Mark E</au><au>Goldsmith, C. Franklin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>123</volume><issue>28</issue><spage>5866</spage><epage>5876</epage><pages>5866-5876</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The decomposition of isopropyl nitrate was measured behind incident shock waves using laser schlieren densitometry in a diaphragmless shock tube. Experiments were conducted over the temperature range of 700–1000 K and at pressures of 71, 126, and 240 Torr. Electronic structure theory and RRKM Master Equation methods were used to predict the decomposition kinetics. RRKM/ME parameters were optimized against the experimental data to provide an accurate prediction over a broader range of conditions. The initial decomposition i-C3H7ONO2 ⇌ i-C3H7O + NO2 has a high-pressure limit rate coefficient of 5.70 × 1022 T –1.80 exp­[−21287.5/T] s–1. A new chemical kinetic mechanism was developed to model the chemistry after the initial dissociation. A new shock tube module was developed for Cantera, which allows for arbitrarily large mechanisms in the simulation of laser schlieren experiments. The present work is in good agreement with previous experimental studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31192602</pmid><doi>10.1021/acs.jpca.9b03325</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-07, Vol.123 (28), p.5866-5876
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2251699825
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20Tube%20Laser%20Schlieren%20Study%20of%20the%20Pyrolysis%20of%20Isopropyl%20Nitrate&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Fuller,%20Mark%20E&rft.date=2019-07-18&rft.volume=123&rft.issue=28&rft.spage=5866&rft.epage=5876&rft.pages=5866-5876&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.9b03325&rft_dat=%3Cproquest_cross%3E2251699825%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a336t-56b26e74befd5f36c4093c2f331437f525824f149ff54e7de85465c260d514f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2251699825&rft_id=info:pmid/31192602&rfr_iscdi=true