Loading…
Group B Streptococcus DNA Copy Numbers Measured by Digital PCR Correlates with Perinatal Outcomes
Group B Streptococcus (GBS) is a one of the main causes of perinatal disease, yet the method for GBS detection, broth-enriched culture, is time-consuming and has low sensitivity and accuracy. We aimed to develop a GBS digital PCR (GBS-dPCR) assay for detecting GBS colonization. More rapid and accura...
Saved in:
Published in: | Analytical chemistry (Washington) 2019-08, Vol.91 (15), p.9466-9471 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Group B Streptococcus (GBS) is a one of the main causes of perinatal disease, yet the method for GBS detection, broth-enriched culture, is time-consuming and has low sensitivity and accuracy. We aimed to develop a GBS digital PCR (GBS-dPCR) assay for detecting GBS colonization. More rapid and accurate detection of GBS colonization could increase GBS diagnosis and treatment closer to delivery. A single-center, retrospective, case-controlled study was performed. A total of 182 rectovaginal swabs from pregnant women, who were undergoing prenatal screening by broth-enriched culture, were evaluated using GBS-dPCR targeting the cfb gene of GBS. Pregnant women with GBS colonization were followed up for correlation analysis between GBS DNA copy numbers and perinatal outcomes. The results of the GBS-dPCR assay were compared to those from the broth-enriched culture, which is the gold standard for GBS detection. The sensitivity and specificity of GBS-dPCR were 98% and 92.5%, respectively. By discrepant result analysis, the specificity of GBS-dPCR was raised to 97.4%. The incidence of premature rupture of membrane (PROM) and neonatal infection were statistically significantly positively correlated with GBS DNA copy numbers. GBS-dPCR has the advantage of directly detecting GBS colonization from swabs with high specificity and sensitivity, while reducing turnaround time ( |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.8b05872 |